Switch to mutable rays (#13)

This commit is contained in:
Patrick Stevens
2023-01-07 11:24:23 +00:00
committed by GitHub
parent 2cf9dd0bdb
commit 075890919c
9 changed files with 379 additions and 325 deletions

View File

@@ -7,19 +7,6 @@ type fuzz
[<Measure>]
type prob
type Sphere =
private
{
Centre : Point
Radius : float
/// If an incoming ray has the given colour, and hits the
/// given point (which is guaranteed to be on the surface),
/// what colour ray does it output and in what direction?
Reflection : LightRay -> Point -> LightDestination
RadiusSquared : float
BoundingBox : BoundingBox
}
type SphereStyle =
/// An emitter of light.
| LightSource of Texture
@@ -78,122 +65,128 @@ module Sphere =
let normal (centre : Point) (p : Point) : Ray =
Ray.make' p (Point.differenceToThenFrom p centre) |> ValueOption.get
let private liesOn' (centre : Point) (radius : float) (p : Point) : bool =
let rSquared = radius * radius
Float.equal (Vector.normSquared (Point.differenceToThenFrom p centre)) rSquared
let private reflectWithoutFuzz normal (strikePoint : Point) (incomingLight : byref<LightRay>) : unit =
let plane = Plane.makeOrthonormalSpannedBy normal incomingLight.Ray
match plane with
| ValueNone ->
// Incoming ray is directly along the normal
Ray.flipInPlace incomingLight.Ray
Ray.translateToIntersect strikePoint incomingLight.Ray
| ValueSome plane ->
// Incoming ray is (plane1.ray) plane1 + (plane2.ray) plane2
// We want the reflection in the normal, so need (plane1.ray) plane1 - (plane2.ray) plane2
let normalComponent = -UnitVector.dot plane.V1 (Ray.vector incomingLight.Ray)
let tangentComponent = (UnitVector.dot plane.V2 (Ray.vector incomingLight.Ray))
let dest =
Ray.walkAlongRay (Ray.walkAlongRay plane.Point plane.V1 normalComponent) plane.V2 tangentComponent
Ray.overwriteWithMake strikePoint (Point.differenceToThenFrom dest strikePoint) &incomingLight.Ray
// This is safe: it's actually a logic error for this to fail.
|> ignore
let private addFuzz
(fuzz : float<fuzz>)
(rand : FloatProducer)
(strikePoint : Point)
(reflected : byref<LightRay>)
: unit
=
let mutable isDone = false
while not isDone do
let offset = UnitVector.random rand (Point.dimension strikePoint)
let sphereCentre = Ray.walkAlong reflected.Ray 1.0
let target = Ray.walkAlongRay sphereCentre offset (fuzz / 1.0<fuzz>)
let newDirection = Point.differenceToThenFrom target strikePoint
isDone <- Ray.overwriteWithMake strikePoint newDirection &reflected.Ray
/// If there were no refraction at all, the reflected ray would bounce off as `reflectionWithoutFuzz`.
/// This function adds a refraction term.
let private refract
(inside : bool)
(normal : Ray)
(strikePoint : Point)
(incomingCos : float)
(index : float<ior>)
(incomingLight : byref<LightRay>)
: unit
=
let index = if inside then 1.0<ior> / index else index / 1.0<ior>
let plane = Plane.makeOrthonormalSpannedBy normal incomingLight.Ray
match plane with
| ValueNone ->
// Incoming ray was parallel to normal; pass straight through
let (UnitVector vec) = Ray.vector incomingLight.Ray
Ray.overwriteWithMake strikePoint vec &incomingLight.Ray |> ignore
| ValueSome plane ->
let incomingSin = sqrt (1.0 - incomingCos * incomingCos)
let outgoingSin = incomingSin / index
if Float.compare outgoingSin 1.0 = Greater then
// override our decision to refract - from this angle, there's no way we could have refracted
reflectWithoutFuzz normal strikePoint &incomingLight
else
let outgoingCos = sqrt (1.0 - outgoingSin * outgoingSin)
let outgoingPoint =
Ray.walkAlong (Ray.make (Ray.walkAlong normal (-outgoingCos)) plane.V2) outgoingSin
let outgoingLine = Point.differenceToThenFrom outgoingPoint strikePoint
Ray.overwriteWithMake strikePoint outgoingLine &incomingLight.Ray
// This is safe: it's a logic error for this to fail. It would imply both the
// cos and the sin outgoing components were 0.
|> ignore
/// If the light ray is absorbed, this returns Some(the colour of light).
/// Otherwise, returns None and mutates `incomingLight`.
let reflection
(style : SphereStyle)
(centre : Point)
(radius : float)
(radiusSquared : float)
(flipped : bool)
(incomingLight : LightRay)
(incomingLight : byref<LightRay>)
(strikePoint : Point)
: LightDestination
: Pixel ValueOption
=
let normal = normal centre strikePoint
// If the incoming ray is on the sphere, then we have to be an internal ray, so the normal is flipped.
// But to model a glass shell (not a sphere), we allow negative radius, which contributes a flipping term.
let inside, normal =
match
Float.compare
(Vector.normSquared (Point.differenceToThenFrom centre (Ray.origin incomingLight.Ray)))
radiusSquared
with
| Equal
| Less ->
// Point is inside or on the sphere so we are coming from within
if flipped then
false, normal
else
true, Ray.make (Ray.origin normal) (UnitVector.flip (Ray.vector normal))
| Greater ->
if flipped then
true, Ray.make (Ray.origin normal) (UnitVector.flip (Ray.vector normal))
else
false, normal
let mutable inside = false
let mutable normal = normal centre strikePoint
let fuzzedReflection (fuzz : (float<fuzz> * FloatProducer) option) =
let plane = Plane.makeSpannedBy normal incomingLight.Ray |> Plane.orthonormalise
match
Float.compare
(Vector.normSquared (Point.differenceToThenFrom centre (Ray.origin incomingLight.Ray)))
radiusSquared
with
| Equal
| Less ->
// Point is inside or on the sphere so we are coming from within
if not flipped then
inside <- true
Ray.flipInPlace normal
| Greater ->
if flipped then
inside <- true
Ray.flipInPlace normal
let outgoing =
match plane with
| ValueNone ->
// Incoming ray is directly along the normal
Ray.flip incomingLight.Ray |> Ray.parallelTo strikePoint
| ValueSome plane ->
// Incoming ray is (plane1.ray) plane1 + (plane2.ray) plane2
// We want the reflection in the normal, so need (plane1.ray) plane1 - (plane2.ray) plane2
let normalComponent = -UnitVector.dot plane.V1 (Ray.vector incomingLight.Ray)
let tangentComponent = (UnitVector.dot plane.V2 (Ray.vector incomingLight.Ray))
let dest =
Ray.walkAlong
(Ray.make (Ray.walkAlong (Ray.make plane.Point plane.V1) normalComponent) plane.V2)
tangentComponent
Point.differenceToThenFrom dest strikePoint
|> Ray.make' strikePoint
// This is safe: it's actually a logic error for this to fail.
|> ValueOption.get
match fuzz with
| None -> outgoing
| Some (fuzz, rand) ->
let mutable answer = Unchecked.defaultof<_>
while obj.ReferenceEquals (answer, null) do
let offset = UnitVector.random rand (Point.dimension centre)
let sphereCentre = Ray.walkAlong outgoing 1.0
let target = Ray.walkAlong (Ray.make sphereCentre offset) (fuzz / 1.0<fuzz>)
let exitPoint =
Point.differenceToThenFrom target strikePoint |> Ray.make' strikePoint
match exitPoint with
| ValueNone -> ()
| ValueSome o -> answer <- o
answer
let refract (incomingCos : float) (index : float<ior>) =
let index = if inside then 1.0<ior> / index else index / 1.0<ior>
let plane = Plane.makeSpannedBy normal incomingLight.Ray |> Plane.orthonormalise
match plane with
| ValueNone ->
// Incoming ray was parallel to normal; pass straight through
Ray.make strikePoint (Ray.vector incomingLight.Ray)
| ValueSome plane ->
let incomingSin = sqrt (1.0 - incomingCos * incomingCos)
let outgoingSin = incomingSin / index
if Float.compare outgoingSin 1.0 = Greater then
// override our decision to refract - from this angle, there's no way we could have refracted
fuzzedReflection None
else
let outgoingCos = sqrt (1.0 - outgoingSin * outgoingSin)
let outgoingPoint =
Ray.walkAlong (Ray.make (Ray.walkAlong normal (-outgoingCos)) plane.V2) outgoingSin
Point.differenceToThenFrom outgoingPoint strikePoint
|> Ray.make' strikePoint
// This is safe: it's a logic error for this to fail. It would imply both the
// cos and the sin outgoing components were 0.
|> ValueOption.get
let inside = inside
let normal = normal
match style with
| SphereStyle.LightSource texture ->
texture
|> Texture.colourAt strikePoint
|> Pixel.combine incomingLight.Colour
|> Absorbs
|> ValueSome
| SphereStyle.LightSourceCap colour ->
let circleCentreZCoord = Point.coordinate 0 centre
let zCoordLowerBound = circleCentreZCoord + (radius - (radius / 4.0))
@@ -204,37 +197,29 @@ module Sphere =
| Greater -> Pixel.combine colour incomingLight.Colour
| _ -> Colour.Black
Absorbs colour
ValueSome colour
| SphereStyle.LambertReflection (albedo, texture, rand) ->
let outgoing =
let sphereCentre = Ray.walkAlong normal 1.0
let mutable answer = Unchecked.defaultof<_>
while obj.ReferenceEquals (answer, null) do
let offset = UnitVector.random rand (Point.dimension sphereCentre)
let target = Ray.walkAlong (Ray.make sphereCentre offset) 1.0
let outputPoint =
Point.differenceToThenFrom target strikePoint |> Ray.make' strikePoint
match outputPoint with
| ValueSome o -> answer <- o
| ValueNone -> ()
answer
let newColour =
texture
|> Texture.colourAt strikePoint
|> Pixel.combine incomingLight.Colour
|> Pixel.darken albedo
Continues
{
Ray = outgoing
Colour = newColour
}
incomingLight.Colour <- newColour
let sphereCentre = Ray.walkAlong normal 1.0
let mutable isDone = false
while not isDone do
let offset = UnitVector.random rand (Point.dimension sphereCentre)
let target = Ray.walkAlongRay sphereCentre offset 1.0
let outputVec = Point.differenceToThenFrom target strikePoint
isDone <- Ray.overwriteWithMake strikePoint outputVec &incomingLight.Ray
ValueNone
| SphereStyle.PureReflection (albedo, texture) ->
let darkened =
@@ -243,11 +228,9 @@ module Sphere =
|> Pixel.combine incomingLight.Colour
|> Pixel.darken albedo
Continues
{
Ray = fuzzedReflection None
Colour = darkened
}
reflectWithoutFuzz normal strikePoint &incomingLight
incomingLight.Colour <- darkened
ValueNone
| SphereStyle.FuzzedReflection (albedo, texture, fuzz, random) ->
let darkened =
@@ -256,11 +239,11 @@ module Sphere =
|> Pixel.combine incomingLight.Colour
|> Pixel.darken albedo
Continues
{
Ray = fuzzedReflection (Some (fuzz, random))
Colour = darkened
}
incomingLight.Colour <- darkened
reflectWithoutFuzz normal strikePoint &incomingLight
addFuzz fuzz random strikePoint &incomingLight
ValueNone
| SphereStyle.Dielectric (albedo, texture, sphereRefractance, refractionProb, random) ->
let newColour =
@@ -273,19 +256,15 @@ module Sphere =
if LanguagePrimitives.FloatWithMeasure rand > refractionProb then
// reflect!
Continues
{
Ray = fuzzedReflection None
Colour = newColour
}
incomingLight.Colour <- newColour
reflectWithoutFuzz normal strikePoint &incomingLight
ValueNone
else
let incomingCos = UnitVector.dot (Ray.vector incomingLight.Ray) (Ray.vector normal)
Continues
{
Ray = refract incomingCos sphereRefractance
Colour = newColour
}
refract inside normal strikePoint incomingCos sphereRefractance &incomingLight
incomingLight.Colour <- newColour
ValueNone
| SphereStyle.Glass (albedo, texture, sphereRefractance, random) ->
let newColour =
@@ -312,25 +291,44 @@ module Sphere =
if LanguagePrimitives.FloatWithMeasure rand < reflectionProb then
// reflect!
Continues
{
Ray = fuzzedReflection None
Colour = newColour
}
reflectWithoutFuzz normal strikePoint &incomingLight
incomingLight.Colour <- newColour
ValueNone
else
Continues
{
Ray = refract incomingCos sphereRefractance
Colour = newColour
}
refract inside normal strikePoint incomingCos sphereRefractance &incomingLight
incomingLight.Colour <- newColour
ValueNone
let make (style : SphereStyle) (centre : Point) (radius : float) : Sphere =
type Sphere =
private
{
Centre : Point
Radius : float
RadiusSquared : float
BoundingBox : BoundingBox
Style : SphereStyle
}
/// If an incoming ray has the given colour, and hits the
/// given point (which is guaranteed to be on the surface),
/// does it get absorbed? If not, mutates the input `ray` to hold the new light ray.
member this.Reflection (ray : byref<LightRay>, strikePoint : Point) : Pixel ValueOption =
Sphere.reflection
this.Style
this.Centre
this.Radius
this.RadiusSquared
(Float.compare this.Radius 0.0 = Less)
&ray
strikePoint
static member make (style : SphereStyle) (centre : Point) (radius : float) : Sphere =
let radiusSquared = radius * radius
{
Style = style
Centre = centre
Radius = radius
Reflection = reflection style centre radius radiusSquared (Float.compare radius 0.0 = Less)
RadiusSquared = radiusSquared
BoundingBox =
BoundingBox.make
@@ -338,16 +336,17 @@ module Sphere =
(Point.sum centre (Point.make radius radius radius))
}
let boundingBox (s : Sphere) = s.BoundingBox
static member boundingBox (s : Sphere) = s.BoundingBox
let liesOn (point : Point) (sphere : Sphere) : bool =
liesOn' sphere.Centre sphere.Radius point
static member liesOn (point : Point) (sphere : Sphere) : bool =
let rSquared = sphere.RadiusSquared
Float.equal (Vector.normSquared (Point.differenceToThenFrom point sphere.Centre)) rSquared
/// Returns the distance along this ray at which the nearest intersection of the ray lies with this sphere.
/// Does not return any intersections which are behind us.
/// If the sphere is made of a material which does not re-emit light, you'll
/// get a None for the outgoing ray.
let firstIntersection (sphere : Sphere) (ray : Ray) : float voption =
static member firstIntersection (sphere : Sphere) (ray : Ray) : float voption =
let difference = Point.differenceToThenFrom (Ray.origin ray) sphere.Centre
let b = (UnitVector.dot' (Ray.vector ray) difference)