Switch to mutable rays (#13)

This commit is contained in:
Patrick Stevens
2023-01-07 11:24:23 +00:00
committed by GitHub
parent 2cf9dd0bdb
commit 075890919c
9 changed files with 379 additions and 325 deletions

View File

@@ -45,6 +45,12 @@ module TestSphere =
let strikePoint = Point.make 0.0 0.0 1.0
let mutable incoming =
{
LightRay.Ray = ray
Colour = Colour.White
}
let destination =
Sphere.reflection
(SphereStyle.Glass (1.0<albedo>, Texture.Colour Colour.Green, 1.5<ior>, rand))
@@ -52,20 +58,17 @@ module TestSphere =
1.0
1.0
false
{
LightRay.Ray = ray
Colour = Colour.White
}
&incoming
strikePoint
match destination with
| Continues onward ->
onward.Colour |> shouldEqual Colour.Green
Point.equal (Ray.origin onward.Ray) strikePoint |> shouldEqual true
| ValueNone ->
incoming.Colour |> shouldEqual Colour.Green
Point.equal (Ray.origin incoming.Ray) strikePoint |> shouldEqual true
Vector.equal (Ray.vector onward.Ray |> UnitVector.scale 1.0) (Ray.vector ray |> UnitVector.scale 1.0)
Vector.equal (Ray.vector incoming.Ray |> UnitVector.scale 1.0) (Ray.vector ray |> UnitVector.scale 1.0)
|> shouldEqual true
| Absorbs colour -> failwithf "Absorbed: %+A" colour
| ValueSome colour -> failwithf "Absorbed: %+A" colour
[<Test>]
let ``Glass sphere perfectly refracts through the middle`` () =
@@ -76,6 +79,12 @@ module TestSphere =
let strikePoint = Point.make 0.0 0.0 1.0
let mutable incoming =
{
LightRay.Ray = ray
Colour = Colour.White
}
let destination =
Sphere.reflection
(SphereStyle.Glass (1.0<albedo>, Texture.Colour Colour.Green, 1.5<ior>, rand))
@@ -83,20 +92,17 @@ module TestSphere =
1.0
1.0
false
{
LightRay.Ray = ray
Colour = Colour.White
}
&incoming
strikePoint
match destination with
| Continues onward ->
onward.Colour |> shouldEqual Colour.Green
Point.equal (Ray.origin onward.Ray) strikePoint |> shouldEqual true
| ValueNone ->
incoming.Colour |> shouldEqual Colour.Green
Point.equal (Ray.origin incoming.Ray) strikePoint |> shouldEqual true
Vector.equal (Ray.vector onward.Ray |> UnitVector.scale 1.0) (Ray.vector ray |> UnitVector.scale 1.0)
Vector.equal (Ray.vector incoming.Ray |> UnitVector.scale 1.0) (Ray.vector ray |> UnitVector.scale 1.0)
|> shouldEqual true
| Absorbs colour -> failwithf "Absorbed: %+A" colour
| ValueSome colour -> failwithf "Absorbed: %+A" colour
[<Test>]
let ``Dielectric sphere refracts when incoming ray `` () =
@@ -107,6 +113,12 @@ module TestSphere =
let strikePoint = Point.make 0.0 0.0 1.0
let mutable incoming =
{
LightRay.Ray = ray
Colour = Colour.White
}
let destination =
Sphere.reflection
(SphereStyle.Dielectric (1.0<albedo>, Texture.Colour Colour.Green, 1.5<ior>, 1.0<prob>, rand))
@@ -114,20 +126,17 @@ module TestSphere =
1.0
1.0
false
{
LightRay.Ray = ray
Colour = Colour.White
}
&incoming
strikePoint
match destination with
| Continues onward ->
onward.Colour |> shouldEqual Colour.Green
Point.equal (Ray.origin onward.Ray) strikePoint |> shouldEqual true
| ValueNone ->
incoming.Colour |> shouldEqual Colour.Green
Point.equal (Ray.origin incoming.Ray) strikePoint |> shouldEqual true
Vector.equal (Ray.vector onward.Ray |> UnitVector.scale 1.0) (Ray.vector ray |> UnitVector.scale 1.0)
Vector.equal (Ray.vector incoming.Ray |> UnitVector.scale 1.0) (Ray.vector ray |> UnitVector.scale 1.0)
|> shouldEqual true
| Absorbs colour -> failwithf "Absorbed: %+A" colour
| ValueSome colour -> failwithf "Absorbed: %+A" colour
[<Test>]
let ``Test planeMap`` () =

View File

@@ -5,11 +5,11 @@ type Hittable =
| UnboundedSphere of Sphere
| InfinitePlane of InfinitePlane
member this.Reflection (incoming : LightRay) (strikePoint : Point) =
member this.Reflection (incoming : byref<LightRay>, strikePoint : Point) =
match this with
| Sphere s
| UnboundedSphere s -> s.Reflection incoming strikePoint
| InfinitePlane p -> p.Reflection incoming strikePoint
| UnboundedSphere s -> s.Reflection (&incoming, strikePoint)
| InfinitePlane p -> p.Reflection (&incoming, strikePoint)
member this.BoundingBox : BoundingBox voption =
match this with

View File

@@ -12,39 +12,11 @@ type InfinitePlaneStyle =
| LambertReflection of albedo : float<albedo> * colour : Pixel * FloatProducer
| FuzzedReflection of albedo : float<albedo> * colour : Pixel * fuzz : float<fuzz> * FloatProducer
type InfinitePlane =
{
Normal : UnitVector
Point : Point
/// If an incoming ray hits the given point (which is guaranteed to be on the surface),
/// what colour ray does it output and in what direction?
Reflection : LightRay -> Point -> LightDestination
}
[<RequireQualifiedAccess>]
module InfinitePlane =
/// Returns the position along this ray where we intersect this plane, or None if none exists or the ray is in the plane.
/// Does not return any intersections which are behind us.
/// If the plane is made of a material which does not re-emit light, you'll
/// get a None for the outgoing ray.
let intersection (plane : InfinitePlane) (ray : Ray) : float voption =
let rayVec = Ray.vector ray
let denominator = UnitVector.dot plane.Normal rayVec
if Float.equal denominator 0.0 then
ValueNone
else
let t =
(UnitVector.dot' plane.Normal (Point.differenceToThenFrom plane.Point (Ray.origin ray)))
/ denominator
if Float.positive t then ValueSome t else ValueNone
let pureOutgoing (strikePoint : Point) (normal : UnitVector) (incomingRay : Ray) : Ray =
let plane =
Plane.makeSpannedBy (Ray.make strikePoint normal) incomingRay
|> Plane.orthonormalise
let plane = Plane.makeOrthonormalSpannedBy (Ray.make strikePoint normal) incomingRay
match plane with
| ValueNone ->
@@ -72,65 +44,93 @@ module InfinitePlane =
(style : InfinitePlaneStyle)
(pointOnPlane : Point)
(normal : UnitVector)
: LightRay -> Point -> LightDestination
(incomingRay : byref<LightRay>)
(strikePoint : Point)
: Pixel ValueOption
=
fun incomingRay strikePoint ->
match style with
| InfinitePlaneStyle.LightSource texture ->
texture
|> Texture.colourAt strikePoint
|> Pixel.combine incomingRay.Colour
|> Absorbs
match style with
| InfinitePlaneStyle.LightSource texture ->
texture
|> Texture.colourAt strikePoint
|> Pixel.combine incomingRay.Colour
|> ValueSome
| InfinitePlaneStyle.FuzzedReflection (albedo, colour, fuzz, rand) ->
let newColour = newColour incomingRay.Colour albedo colour
let pureOutgoing = pureOutgoing strikePoint normal incomingRay.Ray
let mutable outgoing = Unchecked.defaultof<_>
| InfinitePlaneStyle.FuzzedReflection (albedo, colour, fuzz, rand) ->
let newColour = newColour incomingRay.Colour albedo colour
let pureOutgoing = pureOutgoing strikePoint normal incomingRay.Ray
let mutable outgoing = Unchecked.defaultof<_>
while obj.ReferenceEquals (outgoing, null) do
let offset = UnitVector.random rand (Point.dimension pointOnPlane)
let sphereCentre = Ray.walkAlong pureOutgoing 1.0
let target = Ray.walkAlong (Ray.make sphereCentre offset) (fuzz / 1.0<fuzz>)
let output = Point.differenceToThenFrom target strikePoint |> Ray.make' strikePoint
while obj.ReferenceEquals (outgoing, null) do
let offset = UnitVector.random rand (Point.dimension pointOnPlane)
let sphereCentre = Ray.walkAlong pureOutgoing 1.0
let target = Ray.walkAlong (Ray.make sphereCentre offset) (fuzz / 1.0<fuzz>)
let output = Point.differenceToThenFrom target strikePoint |> Ray.make' strikePoint
match output with
| ValueNone -> ()
| ValueSome output -> outgoing <- output
match output with
| ValueNone -> ()
| ValueSome output -> outgoing <- output
Continues
{
Ray = outgoing
Colour = newColour
}
incomingRay.Colour <- newColour
incomingRay.Ray <- outgoing
| InfinitePlaneStyle.LambertReflection (albedo, colour, rand) ->
let outgoing =
let sphereCentre = Ray.walkAlong (Ray.make strikePoint normal) 1.0
let offset = UnitVector.random rand (Point.dimension pointOnPlane)
let target = Ray.walkAlong (Ray.make sphereCentre offset) 1.0
ValueNone
Point.differenceToThenFrom target strikePoint
|> Ray.make' strikePoint
|> ValueOption.get
| InfinitePlaneStyle.LambertReflection (albedo, colour, rand) ->
let outgoing =
let sphereCentre = Ray.walkAlong (Ray.make strikePoint normal) 1.0
let offset = UnitVector.random rand (Point.dimension pointOnPlane)
let target = Ray.walkAlong (Ray.make sphereCentre offset) 1.0
let newColour = Pixel.combine incomingRay.Colour colour |> Pixel.darken albedo
Point.differenceToThenFrom target strikePoint
|> Ray.make' strikePoint
|> ValueOption.get
Continues
{
Ray = outgoing
Colour = newColour
}
let newColour = Pixel.combine incomingRay.Colour colour |> Pixel.darken albedo
| InfinitePlaneStyle.PureReflection (albedo, colour) ->
{
Ray = pureOutgoing strikePoint normal incomingRay.Ray
Colour = newColour incomingRay.Colour albedo colour
}
|> Continues
incomingRay.Colour <- newColour
incomingRay.Ray <- outgoing
let make (style : InfinitePlaneStyle) (pointOnPlane : Point) (normal : UnitVector) : InfinitePlane =
ValueNone
| InfinitePlaneStyle.PureReflection (albedo, colour) ->
incomingRay.Colour <- newColour incomingRay.Colour albedo colour
incomingRay.Ray <- pureOutgoing strikePoint normal incomingRay.Ray
ValueNone
type InfinitePlane =
{
Style : InfinitePlaneStyle
Normal : UnitVector
Point : Point
}
/// If an incoming ray hits the given point (which is guaranteed to be on the surface),
/// is it absorbed (if so, returns Some(the colour of light)), or does it bounce off
/// (if so, returns None and mutates the input ray to the new reflected ray)?
member this.Reflection (ray : byref<LightRay>, strikePoint : Point) : Pixel ValueOption =
InfinitePlane.reflection this.Style this.Point this.Normal &ray strikePoint
static member make (style : InfinitePlaneStyle) (pointOnPlane : Point) (normal : UnitVector) : InfinitePlane =
{
Point = pointOnPlane
Style = style
Normal = normal
Reflection = reflection style pointOnPlane normal
}
/// Returns the position along this ray where we intersect this plane, or None if none exists or the ray is in the plane.
/// Does not return any intersections which are behind us.
/// If the plane is made of a material which does not re-emit light, you'll
/// get a None for the outgoing ray.
static member intersection (plane : InfinitePlane) (ray : Ray) : float voption =
let rayVec = Ray.vector ray
let denominator = UnitVector.dot plane.Normal rayVec
if Float.equal denominator 0.0 then
ValueNone
else
let t =
(UnitVector.dot' plane.Normal (Point.differenceToThenFrom plane.Point (Ray.origin ray)))
/ denominator
if Float.positive t then ValueSome t else ValueNone

View File

@@ -6,14 +6,14 @@ type ior
type LightRay =
{
Ray : Ray
Colour : Pixel
// We have chosen not to include refractance here, because that would mean
// we had to model the material at every point in space rather than just the
// ratio of refractance at the boundaries of objects. (For example, if we
// modelled a light ray leaving a glass sphere, we would have to know what
// material we were leaving *into*, which we can't easily know given the
// current structure of things.)
// We have chosen not to include refractance here, because that would mean
// we had to model the material at every point in space rather than just the
// ratio of refractance at the boundaries of objects. (For example, if we
// modelled a light ray leaving a glass sphere, we would have to know what
// material we were leaving *into*, which we can't easily know given the
// current structure of things.)
mutable Ray : Ray
mutable Colour : Pixel
}
type LightDestination =

View File

@@ -61,6 +61,23 @@ module Plane =
Point = Ray.origin r1
}
let makeOrthonormalSpannedBy (r1 : Ray) (r2 : Ray) : OrthonormalPlane ValueOption =
let coefficient = UnitVector.dot r1.Vector r2.Vector
let vec2 =
UnitVector.difference' r2.Vector (UnitVector.scale coefficient r1.Vector)
|> Vector.unitise
match vec2 with
| ValueNone -> ValueNone
| ValueSome v2 ->
{
V1 = r1.Vector
V2 = v2
Point = Ray.origin r1
}
|> ValueSome
/// Construct a basis for this plane, whose second ("up") component is `viewUp` when projected onto the plane.
let basis (viewUp : Vector) (plane : OrthonormalPlane) : Ray * Ray =
let viewUp = Vector.unitise viewUp |> ValueOption.get

View File

@@ -2,12 +2,27 @@ namespace RayTracing
type Ray =
{
Origin : Point
Vector : UnitVector
mutable Origin : Point
mutable Vector : UnitVector
}
[<RequireQualifiedAccess>]
module Ray =
let overwriteWithMake (origin : Point) (vector : Vector) (ray : byref<Ray>) : bool =
let dot = Vector.dot vector vector
if Float.equal dot 0.0 then
false
else
ray.Origin <- origin
ray.Vector <-
let factor = 1.0 / sqrt dot
Vector.scale factor vector |> UnitVector
true
let make' (origin : Point) (vector : Vector) : Ray voption =
match Vector.unitise vector with
| ValueNone -> ValueNone
@@ -24,18 +39,20 @@ module Ray =
Vector = vector
}
let walkAlong (ray : Ray) (magnitude : float) : Point =
let (Point (oX, oY, oZ)) = ray.Origin
let (UnitVector (Vector (vX, vY, vZ))) = ray.Vector
let walkAlongRay (Point (oX, oY, oZ)) (UnitVector (Vector (vX, vY, vZ))) (magnitude : float) : Point =
Point.make (oX + (vX * magnitude)) (oY + (vY * magnitude)) (oZ + (vZ * magnitude))
let walkAlong (ray : Ray) (magnitude : float) : Point =
walkAlongRay ray.Origin ray.Vector magnitude
let parallelTo (p1 : Point) (ray : Ray) : Ray =
{
Vector = ray.Vector
Origin = p1
}
let translateToIntersect (p1 : Point) (ray : Ray) : unit = ray.Origin <- p1
let liesOn (point : Point) (ray : Ray) : bool =
match point, ray.Origin, ray.Vector with
| Point (p1, p2, p3), Point (o1, o2, o3), UnitVector (Vector (r1, r2, r3)) ->
@@ -58,3 +75,7 @@ module Ray =
let (UnitVector v) = r.Vector
Vector.scale -1.0 v |> UnitVector
}
let flipInPlace (r : Ray) : unit =
let (UnitVector v) = r.Vector
r.Vector <- Vector.scale -1.0 v |> UnitVector

View File

@@ -3,9 +3,9 @@ namespace RayTracing
type Ray =
{
/// For performance reasons, this is public, but please don't use it
Origin : Point
mutable Origin : Point
/// For performance reasons, this is public, but please don't use it
Vector : UnitVector
mutable Vector : UnitVector
}
[<RequireQualifiedAccess>]
@@ -13,9 +13,16 @@ module Ray =
val make' : Point -> Vector -> Ray voption
val make : Point -> UnitVector -> Ray
/// If we can make a ray from Point and Vector, overwrite the input and return true.
/// Otherwise do nothing and return false.
val overwriteWithMake : Point -> Vector -> byref<Ray> -> bool
val walkAlong : Ray -> float -> Point
val walkAlongRay : Point -> UnitVector -> float -> Point
val parallelTo : Point -> Ray -> Ray
val translateToIntersect : Point -> Ray -> unit
val liesOn : Point -> Ray -> bool
@@ -23,3 +30,4 @@ module Ray =
val inline origin : Ray -> Point
val flip : Ray -> Ray
val flipInPlace : Ray -> unit

View File

@@ -59,7 +59,7 @@ module Scene =
else
struct (bestFloat, bestObject, bestLength)
let hitObject (s : Scene) (ray : Ray) : (Hittable * Point) voption =
let hitObject (s : Scene) (ray : Ray) : struct (Hittable * Point) voption =
let mutable best = Unchecked.defaultof<_>
let mutable bestLength = nan
let mutable bestFloat = infinity
@@ -88,31 +88,30 @@ module Scene =
if Double.IsNaN bestLength then
ValueNone
else
ValueSome (best, Ray.walkAlong ray bestLength)
ValueSome (struct (best, Ray.walkAlong ray bestLength))
let internal traceRay (maxCount : int) (scene : Scene) (ray : LightRay) : Pixel =
let rec go (bounces : int) (ray : LightRay) : Pixel =
if bounces > maxCount then
if ray.Colour = Colour.Black then
Colour.Black
else
Colour.HotPink
else
let internal traceRay (maxCount : int) (scene : Scene) (ray : byref<LightRay>) : Pixel =
let mutable bounces = 0
let mutable result = Colour.Black
let mutable isDone = false
while bounces <= maxCount && not isDone do
let thingsWeHit = hitObject scene ray.Ray
match thingsWeHit with
| ValueNone ->
// Ray goes off into the distance and is never heard from again
Colour.Black
isDone <- true
| ValueSome (object, strikePoint) ->
let outgoingRay = object.Reflection ray strikePoint
let stopWithColour = object.Reflection (&ray, strikePoint)
match outgoingRay with
| Absorbs colour -> colour
| Continues outgoingRay -> go (bounces + 1) outgoingRay
match stopWithColour with
| ValueSome colour ->
isDone <- true
result <- colour
| ValueNone -> bounces <- bounces + 1
go 0 ray
if not isDone then Colour.HotPink else result
/// Trace a ray to this one pixel, updating the PixelStats with the result.
/// n.b. not thread safe
@@ -122,35 +121,36 @@ module Scene =
(camera : Camera)
(maxWidthCoord : int)
(maxHeightCoord : int)
row
col
stats
(row : int)
(col : int)
(stats : PixelStats)
: unit
=
let struct (rand1, rand2) = rand.GetTwo ()
let landingPoint =
((float col + rand1) * camera.ViewportWidth) / float maxWidthCoord
let pointOnXAxis = landingPoint |> Ray.walkAlong camera.ViewportXAxis
let toWalkUp = Ray.parallelTo pointOnXAxis camera.ViewportYAxis
let pointOnXAxis = Ray.walkAlong camera.ViewportXAxis landingPoint
let walkDistance =
((float row + rand2) * camera.ViewportHeight) / float maxHeightCoord
let endPoint =
((float row + rand2) * camera.ViewportHeight) / float maxHeightCoord
|> Ray.walkAlong toWalkUp
Ray.walkAlongRay pointOnXAxis camera.ViewportYAxis.Vector walkDistance
let ray =
Ray.make' (Ray.origin camera.View) (Point.differenceToThenFrom endPoint (Ray.origin camera.View))
|> ValueOption.get
let mutable initialRay =
{
Ray = ray
Colour = Colour.White
}
// Here we've hardcoded that the eye is emitting white light through a medium with refractance 1.
let result =
traceRay
camera.BounceDepth
scene
{
Ray = ray
Colour = Colour.White
}
let result = traceRay camera.BounceDepth scene &initialRay
PixelStats.add result stats
@@ -171,12 +171,12 @@ module Scene =
let firstTrial = min 5 (camera.SamplesPerPixel / 2)
for _ in 0..firstTrial do
for _ = 0 to firstTrial do
traceOnce scene rand camera maxWidthCoord maxHeightCoord row col stats
let oldMean = PixelStats.mean stats
for _ in 1..firstTrial do
for _ = 1 to firstTrial do
traceOnce scene rand camera maxWidthCoord maxHeightCoord row col stats
let newMean = PixelStats.mean stats
@@ -188,7 +188,7 @@ module Scene =
newMean
else
for _ in 1 .. (camera.SamplesPerPixel - 2 * firstTrial - 1) do
for _ = 1 to (camera.SamplesPerPixel - 2 * firstTrial - 1) do
traceOnce scene rand camera maxWidthCoord maxHeightCoord row col stats
PixelStats.mean stats

View File

@@ -7,19 +7,6 @@ type fuzz
[<Measure>]
type prob
type Sphere =
private
{
Centre : Point
Radius : float
/// If an incoming ray has the given colour, and hits the
/// given point (which is guaranteed to be on the surface),
/// what colour ray does it output and in what direction?
Reflection : LightRay -> Point -> LightDestination
RadiusSquared : float
BoundingBox : BoundingBox
}
type SphereStyle =
/// An emitter of light.
| LightSource of Texture
@@ -78,122 +65,128 @@ module Sphere =
let normal (centre : Point) (p : Point) : Ray =
Ray.make' p (Point.differenceToThenFrom p centre) |> ValueOption.get
let private liesOn' (centre : Point) (radius : float) (p : Point) : bool =
let rSquared = radius * radius
Float.equal (Vector.normSquared (Point.differenceToThenFrom p centre)) rSquared
let private reflectWithoutFuzz normal (strikePoint : Point) (incomingLight : byref<LightRay>) : unit =
let plane = Plane.makeOrthonormalSpannedBy normal incomingLight.Ray
match plane with
| ValueNone ->
// Incoming ray is directly along the normal
Ray.flipInPlace incomingLight.Ray
Ray.translateToIntersect strikePoint incomingLight.Ray
| ValueSome plane ->
// Incoming ray is (plane1.ray) plane1 + (plane2.ray) plane2
// We want the reflection in the normal, so need (plane1.ray) plane1 - (plane2.ray) plane2
let normalComponent = -UnitVector.dot plane.V1 (Ray.vector incomingLight.Ray)
let tangentComponent = (UnitVector.dot plane.V2 (Ray.vector incomingLight.Ray))
let dest =
Ray.walkAlongRay (Ray.walkAlongRay plane.Point plane.V1 normalComponent) plane.V2 tangentComponent
Ray.overwriteWithMake strikePoint (Point.differenceToThenFrom dest strikePoint) &incomingLight.Ray
// This is safe: it's actually a logic error for this to fail.
|> ignore
let private addFuzz
(fuzz : float<fuzz>)
(rand : FloatProducer)
(strikePoint : Point)
(reflected : byref<LightRay>)
: unit
=
let mutable isDone = false
while not isDone do
let offset = UnitVector.random rand (Point.dimension strikePoint)
let sphereCentre = Ray.walkAlong reflected.Ray 1.0
let target = Ray.walkAlongRay sphereCentre offset (fuzz / 1.0<fuzz>)
let newDirection = Point.differenceToThenFrom target strikePoint
isDone <- Ray.overwriteWithMake strikePoint newDirection &reflected.Ray
/// If there were no refraction at all, the reflected ray would bounce off as `reflectionWithoutFuzz`.
/// This function adds a refraction term.
let private refract
(inside : bool)
(normal : Ray)
(strikePoint : Point)
(incomingCos : float)
(index : float<ior>)
(incomingLight : byref<LightRay>)
: unit
=
let index = if inside then 1.0<ior> / index else index / 1.0<ior>
let plane = Plane.makeOrthonormalSpannedBy normal incomingLight.Ray
match plane with
| ValueNone ->
// Incoming ray was parallel to normal; pass straight through
let (UnitVector vec) = Ray.vector incomingLight.Ray
Ray.overwriteWithMake strikePoint vec &incomingLight.Ray |> ignore
| ValueSome plane ->
let incomingSin = sqrt (1.0 - incomingCos * incomingCos)
let outgoingSin = incomingSin / index
if Float.compare outgoingSin 1.0 = Greater then
// override our decision to refract - from this angle, there's no way we could have refracted
reflectWithoutFuzz normal strikePoint &incomingLight
else
let outgoingCos = sqrt (1.0 - outgoingSin * outgoingSin)
let outgoingPoint =
Ray.walkAlong (Ray.make (Ray.walkAlong normal (-outgoingCos)) plane.V2) outgoingSin
let outgoingLine = Point.differenceToThenFrom outgoingPoint strikePoint
Ray.overwriteWithMake strikePoint outgoingLine &incomingLight.Ray
// This is safe: it's a logic error for this to fail. It would imply both the
// cos and the sin outgoing components were 0.
|> ignore
/// If the light ray is absorbed, this returns Some(the colour of light).
/// Otherwise, returns None and mutates `incomingLight`.
let reflection
(style : SphereStyle)
(centre : Point)
(radius : float)
(radiusSquared : float)
(flipped : bool)
(incomingLight : LightRay)
(incomingLight : byref<LightRay>)
(strikePoint : Point)
: LightDestination
: Pixel ValueOption
=
let normal = normal centre strikePoint
// If the incoming ray is on the sphere, then we have to be an internal ray, so the normal is flipped.
// But to model a glass shell (not a sphere), we allow negative radius, which contributes a flipping term.
let inside, normal =
match
Float.compare
(Vector.normSquared (Point.differenceToThenFrom centre (Ray.origin incomingLight.Ray)))
radiusSquared
with
| Equal
| Less ->
// Point is inside or on the sphere so we are coming from within
if flipped then
false, normal
else
true, Ray.make (Ray.origin normal) (UnitVector.flip (Ray.vector normal))
| Greater ->
if flipped then
true, Ray.make (Ray.origin normal) (UnitVector.flip (Ray.vector normal))
else
false, normal
let mutable inside = false
let mutable normal = normal centre strikePoint
let fuzzedReflection (fuzz : (float<fuzz> * FloatProducer) option) =
let plane = Plane.makeSpannedBy normal incomingLight.Ray |> Plane.orthonormalise
match
Float.compare
(Vector.normSquared (Point.differenceToThenFrom centre (Ray.origin incomingLight.Ray)))
radiusSquared
with
| Equal
| Less ->
// Point is inside or on the sphere so we are coming from within
if not flipped then
inside <- true
Ray.flipInPlace normal
| Greater ->
if flipped then
inside <- true
Ray.flipInPlace normal
let outgoing =
match plane with
| ValueNone ->
// Incoming ray is directly along the normal
Ray.flip incomingLight.Ray |> Ray.parallelTo strikePoint
| ValueSome plane ->
// Incoming ray is (plane1.ray) plane1 + (plane2.ray) plane2
// We want the reflection in the normal, so need (plane1.ray) plane1 - (plane2.ray) plane2
let normalComponent = -UnitVector.dot plane.V1 (Ray.vector incomingLight.Ray)
let tangentComponent = (UnitVector.dot plane.V2 (Ray.vector incomingLight.Ray))
let dest =
Ray.walkAlong
(Ray.make (Ray.walkAlong (Ray.make plane.Point plane.V1) normalComponent) plane.V2)
tangentComponent
Point.differenceToThenFrom dest strikePoint
|> Ray.make' strikePoint
// This is safe: it's actually a logic error for this to fail.
|> ValueOption.get
match fuzz with
| None -> outgoing
| Some (fuzz, rand) ->
let mutable answer = Unchecked.defaultof<_>
while obj.ReferenceEquals (answer, null) do
let offset = UnitVector.random rand (Point.dimension centre)
let sphereCentre = Ray.walkAlong outgoing 1.0
let target = Ray.walkAlong (Ray.make sphereCentre offset) (fuzz / 1.0<fuzz>)
let exitPoint =
Point.differenceToThenFrom target strikePoint |> Ray.make' strikePoint
match exitPoint with
| ValueNone -> ()
| ValueSome o -> answer <- o
answer
let refract (incomingCos : float) (index : float<ior>) =
let index = if inside then 1.0<ior> / index else index / 1.0<ior>
let plane = Plane.makeSpannedBy normal incomingLight.Ray |> Plane.orthonormalise
match plane with
| ValueNone ->
// Incoming ray was parallel to normal; pass straight through
Ray.make strikePoint (Ray.vector incomingLight.Ray)
| ValueSome plane ->
let incomingSin = sqrt (1.0 - incomingCos * incomingCos)
let outgoingSin = incomingSin / index
if Float.compare outgoingSin 1.0 = Greater then
// override our decision to refract - from this angle, there's no way we could have refracted
fuzzedReflection None
else
let outgoingCos = sqrt (1.0 - outgoingSin * outgoingSin)
let outgoingPoint =
Ray.walkAlong (Ray.make (Ray.walkAlong normal (-outgoingCos)) plane.V2) outgoingSin
Point.differenceToThenFrom outgoingPoint strikePoint
|> Ray.make' strikePoint
// This is safe: it's a logic error for this to fail. It would imply both the
// cos and the sin outgoing components were 0.
|> ValueOption.get
let inside = inside
let normal = normal
match style with
| SphereStyle.LightSource texture ->
texture
|> Texture.colourAt strikePoint
|> Pixel.combine incomingLight.Colour
|> Absorbs
|> ValueSome
| SphereStyle.LightSourceCap colour ->
let circleCentreZCoord = Point.coordinate 0 centre
let zCoordLowerBound = circleCentreZCoord + (radius - (radius / 4.0))
@@ -204,37 +197,29 @@ module Sphere =
| Greater -> Pixel.combine colour incomingLight.Colour
| _ -> Colour.Black
Absorbs colour
ValueSome colour
| SphereStyle.LambertReflection (albedo, texture, rand) ->
let outgoing =
let sphereCentre = Ray.walkAlong normal 1.0
let mutable answer = Unchecked.defaultof<_>
while obj.ReferenceEquals (answer, null) do
let offset = UnitVector.random rand (Point.dimension sphereCentre)
let target = Ray.walkAlong (Ray.make sphereCentre offset) 1.0
let outputPoint =
Point.differenceToThenFrom target strikePoint |> Ray.make' strikePoint
match outputPoint with
| ValueSome o -> answer <- o
| ValueNone -> ()
answer
let newColour =
texture
|> Texture.colourAt strikePoint
|> Pixel.combine incomingLight.Colour
|> Pixel.darken albedo
Continues
{
Ray = outgoing
Colour = newColour
}
incomingLight.Colour <- newColour
let sphereCentre = Ray.walkAlong normal 1.0
let mutable isDone = false
while not isDone do
let offset = UnitVector.random rand (Point.dimension sphereCentre)
let target = Ray.walkAlongRay sphereCentre offset 1.0
let outputVec = Point.differenceToThenFrom target strikePoint
isDone <- Ray.overwriteWithMake strikePoint outputVec &incomingLight.Ray
ValueNone
| SphereStyle.PureReflection (albedo, texture) ->
let darkened =
@@ -243,11 +228,9 @@ module Sphere =
|> Pixel.combine incomingLight.Colour
|> Pixel.darken albedo
Continues
{
Ray = fuzzedReflection None
Colour = darkened
}
reflectWithoutFuzz normal strikePoint &incomingLight
incomingLight.Colour <- darkened
ValueNone
| SphereStyle.FuzzedReflection (albedo, texture, fuzz, random) ->
let darkened =
@@ -256,11 +239,11 @@ module Sphere =
|> Pixel.combine incomingLight.Colour
|> Pixel.darken albedo
Continues
{
Ray = fuzzedReflection (Some (fuzz, random))
Colour = darkened
}
incomingLight.Colour <- darkened
reflectWithoutFuzz normal strikePoint &incomingLight
addFuzz fuzz random strikePoint &incomingLight
ValueNone
| SphereStyle.Dielectric (albedo, texture, sphereRefractance, refractionProb, random) ->
let newColour =
@@ -273,19 +256,15 @@ module Sphere =
if LanguagePrimitives.FloatWithMeasure rand > refractionProb then
// reflect!
Continues
{
Ray = fuzzedReflection None
Colour = newColour
}
incomingLight.Colour <- newColour
reflectWithoutFuzz normal strikePoint &incomingLight
ValueNone
else
let incomingCos = UnitVector.dot (Ray.vector incomingLight.Ray) (Ray.vector normal)
Continues
{
Ray = refract incomingCos sphereRefractance
Colour = newColour
}
refract inside normal strikePoint incomingCos sphereRefractance &incomingLight
incomingLight.Colour <- newColour
ValueNone
| SphereStyle.Glass (albedo, texture, sphereRefractance, random) ->
let newColour =
@@ -312,25 +291,44 @@ module Sphere =
if LanguagePrimitives.FloatWithMeasure rand < reflectionProb then
// reflect!
Continues
{
Ray = fuzzedReflection None
Colour = newColour
}
reflectWithoutFuzz normal strikePoint &incomingLight
incomingLight.Colour <- newColour
ValueNone
else
Continues
{
Ray = refract incomingCos sphereRefractance
Colour = newColour
}
refract inside normal strikePoint incomingCos sphereRefractance &incomingLight
incomingLight.Colour <- newColour
ValueNone
let make (style : SphereStyle) (centre : Point) (radius : float) : Sphere =
type Sphere =
private
{
Centre : Point
Radius : float
RadiusSquared : float
BoundingBox : BoundingBox
Style : SphereStyle
}
/// If an incoming ray has the given colour, and hits the
/// given point (which is guaranteed to be on the surface),
/// does it get absorbed? If not, mutates the input `ray` to hold the new light ray.
member this.Reflection (ray : byref<LightRay>, strikePoint : Point) : Pixel ValueOption =
Sphere.reflection
this.Style
this.Centre
this.Radius
this.RadiusSquared
(Float.compare this.Radius 0.0 = Less)
&ray
strikePoint
static member make (style : SphereStyle) (centre : Point) (radius : float) : Sphere =
let radiusSquared = radius * radius
{
Style = style
Centre = centre
Radius = radius
Reflection = reflection style centre radius radiusSquared (Float.compare radius 0.0 = Less)
RadiusSquared = radiusSquared
BoundingBox =
BoundingBox.make
@@ -338,16 +336,17 @@ module Sphere =
(Point.sum centre (Point.make radius radius radius))
}
let boundingBox (s : Sphere) = s.BoundingBox
static member boundingBox (s : Sphere) = s.BoundingBox
let liesOn (point : Point) (sphere : Sphere) : bool =
liesOn' sphere.Centre sphere.Radius point
static member liesOn (point : Point) (sphere : Sphere) : bool =
let rSquared = sphere.RadiusSquared
Float.equal (Vector.normSquared (Point.differenceToThenFrom point sphere.Centre)) rSquared
/// Returns the distance along this ray at which the nearest intersection of the ray lies with this sphere.
/// Does not return any intersections which are behind us.
/// If the sphere is made of a material which does not re-emit light, you'll
/// get a None for the outgoing ray.
let firstIntersection (sphere : Sphere) (ray : Ray) : float voption =
static member firstIntersection (sphere : Sphere) (ray : Ray) : float voption =
let difference = Point.differenceToThenFrom (Ray.origin ray) sphere.Centre
let b = (UnitVector.dot' (Ray.vector ray) difference)