Implement plane prediction (#11)

This commit is contained in:
Patrick Stevens
2023-04-07 20:41:49 +01:00
committed by GitHub
parent 3c964bc132
commit 753722d7ca
7 changed files with 574 additions and 242 deletions

1
Cargo.lock generated
View File

@@ -55,7 +55,6 @@ dependencies = [
name = "little_learner_app"
version = "0.1.0"
dependencies = [
"arrayvec",
"immutable-chunkmap",
"little_learner",
"ordered-float",

View File

@@ -7,12 +7,12 @@ use std::{
ops::{AddAssign, Div, Mul, Neg},
};
impl<A> Zero for DifferentiableHidden<A>
impl<A> Zero for Differentiable<A>
where
A: Zero,
{
fn zero() -> DifferentiableHidden<A> {
DifferentiableHidden::Scalar(Scalar::Number(A::zero(), None))
fn zero() -> Differentiable<A> {
Differentiable::Scalar(Scalar::Number(A::zero(), None))
}
}
@@ -25,16 +25,16 @@ where
}
}
impl<A> One for DifferentiableHidden<A>
impl<A> One for Differentiable<A>
where
A: One,
{
fn one() -> DifferentiableHidden<A> {
DifferentiableHidden::Scalar(Scalar::one())
fn one() -> Differentiable<A> {
Differentiable::Scalar(Scalar::one())
}
}
impl<A> Clone for DifferentiableHidden<A>
impl<A> Clone for Differentiable<A>
where
A: Clone,
{
@@ -47,19 +47,19 @@ where
}
#[derive(Debug)]
enum DifferentiableHidden<A> {
pub enum Differentiable<A> {
Scalar(Scalar<A>),
Vector(Vec<DifferentiableHidden<A>>),
Vector(Vec<Differentiable<A>>),
}
impl<A> Display for DifferentiableHidden<A>
impl<A> Display for Differentiable<A>
where
A: Display,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
DifferentiableHidden::Scalar(s) => f.write_fmt(format_args!("{}", s)),
DifferentiableHidden::Vector(v) => {
Differentiable::Scalar(s) => f.write_fmt(format_args!("{}", s)),
Differentiable::Vector(v) => {
f.write_char('[')?;
for v in v.iter() {
f.write_fmt(format_args!("{}", v))?;
@@ -71,32 +71,32 @@ where
}
}
impl<A> DifferentiableHidden<A> {
fn map<B, F>(&self, f: &mut F) -> DifferentiableHidden<B>
impl<A> Differentiable<A> {
pub fn map<B, F>(&self, f: &mut F) -> Differentiable<B>
where
F: FnMut(Scalar<A>) -> Scalar<B>,
A: Clone,
{
match self {
DifferentiableHidden::Scalar(a) => DifferentiableHidden::Scalar(f(a.clone())),
DifferentiableHidden::Vector(slice) => {
DifferentiableHidden::Vector(slice.iter().map(|x| x.map(f)).collect())
Differentiable::Scalar(a) => Differentiable::Scalar(f(a.clone())),
Differentiable::Vector(slice) => {
Differentiable::Vector(slice.iter().map(|x| x.map(f)).collect())
}
}
}
fn map2<B, C, F>(&self, other: &DifferentiableHidden<B>, f: &F) -> DifferentiableHidden<C>
pub fn map2<B, C, F>(&self, other: &Differentiable<B>, f: &F) -> Differentiable<C>
where
F: Fn(&Scalar<A>, &Scalar<B>) -> Scalar<C>,
A: Clone,
B: Clone,
{
match (self, other) {
(DifferentiableHidden::Scalar(a), DifferentiableHidden::Scalar(b)) => {
DifferentiableHidden::Scalar(f(a, b))
(Differentiable::Scalar(a), Differentiable::Scalar(b)) => {
Differentiable::Scalar(f(a, b))
}
(DifferentiableHidden::Vector(slice_a), DifferentiableHidden::Vector(slice_b)) => {
DifferentiableHidden::Vector(
(Differentiable::Vector(slice_a), Differentiable::Vector(slice_b)) => {
Differentiable::Vector(
slice_a
.iter()
.zip(slice_b.iter())
@@ -108,20 +108,69 @@ impl<A> DifferentiableHidden<A> {
}
}
fn of_slice(input: &[A]) -> DifferentiableHidden<A>
fn of_slice<T>(input: T) -> Differentiable<A>
where
A: Clone,
T: AsRef<[A]>,
{
DifferentiableHidden::Vector(
Differentiable::Vector(
input
.as_ref()
.iter()
.map(|v| DifferentiableHidden::Scalar(Scalar::Number((*v).clone(), None)))
.map(|v| Differentiable::Scalar(Scalar::Number((*v).clone(), None)))
.collect(),
)
}
pub fn rank(&self) -> usize {
match self {
Differentiable::Scalar(_) => 0,
Differentiable::Vector(v) => v[0].rank() + 1,
}
}
pub fn attach_rank<const RANK: usize>(
self: Differentiable<A>,
) -> Option<RankedDifferentiable<A, RANK>> {
if self.rank() == RANK {
Some(RankedDifferentiable { contents: self })
} else {
None
}
}
}
impl<A> DifferentiableHidden<A>
impl<A> Differentiable<A> {
pub fn into_scalar(self) -> Scalar<A> {
match self {
Differentiable::Scalar(s) => s,
Differentiable::Vector(_) => panic!("not a scalar"),
}
}
pub fn into_vector(self) -> Vec<Differentiable<A>> {
match self {
Differentiable::Scalar(_) => panic!("not a vector"),
Differentiable::Vector(v) => v,
}
}
pub fn borrow_scalar(&self) -> &Scalar<A> {
match self {
Differentiable::Scalar(s) => s,
Differentiable::Vector(_) => panic!("not a scalar"),
}
}
pub fn borrow_vector(&self) -> &Vec<Differentiable<A>> {
match self {
Differentiable::Scalar(_) => panic!("not a vector"),
Differentiable::Vector(v) => v,
}
}
}
impl<A> Differentiable<A>
where
A: Clone
+ Eq
@@ -134,7 +183,7 @@ where
+ One
+ Neg<Output = A>,
{
fn accumulate_gradients_vec(v: &[DifferentiableHidden<A>], acc: &mut HashMap<Scalar<A>, A>) {
fn accumulate_gradients_vec(v: &[Differentiable<A>], acc: &mut HashMap<Scalar<A>, A>) {
for v in v.iter().rev() {
v.accumulate_gradients(acc);
}
@@ -142,33 +191,36 @@ where
fn accumulate_gradients(&self, acc: &mut HashMap<Scalar<A>, A>) {
match self {
DifferentiableHidden::Scalar(y) => {
Differentiable::Scalar(y) => {
let k = y.clone_link();
k.invoke(y, A::one(), acc);
}
DifferentiableHidden::Vector(y) => {
DifferentiableHidden::accumulate_gradients_vec(y, acc)
}
Differentiable::Vector(y) => Differentiable::accumulate_gradients_vec(y, acc),
}
}
fn grad_once(self, wrt: &DifferentiableHidden<A>) -> DifferentiableHidden<A> {
fn grad_once<const PARAM_NUM: usize>(
self,
wrt: [Differentiable<A>; PARAM_NUM],
) -> [Differentiable<A>; PARAM_NUM] {
let mut acc = HashMap::new();
self.accumulate_gradients(&mut acc);
wrt.map(&mut |d| match acc.get(&d) {
None => Scalar::Number(A::zero(), None),
Some(x) => Scalar::Number(x.clone(), None),
wrt.map(|wrt| {
wrt.map(&mut |d| match acc.get(&d) {
None => Scalar::Number(A::zero(), None),
Some(x) => Scalar::Number(x.clone(), None),
})
})
}
}
#[derive(Clone, Debug)]
pub struct Differentiable<A, const RANK: usize> {
contents: DifferentiableHidden<A>,
pub struct RankedDifferentiable<A, const RANK: usize> {
contents: Differentiable<A>,
}
impl<A, const RANK: usize> Display for Differentiable<A, RANK>
impl<A, const RANK: usize> Display for RankedDifferentiable<A, RANK>
where
A: Display,
{
@@ -177,123 +229,161 @@ where
}
}
pub fn of_scalar<A>(s: Scalar<A>) -> Differentiable<A, 0> {
Differentiable {
contents: DifferentiableHidden::Scalar(s),
}
}
pub fn to_scalar<A>(s: Differentiable<A, 0>) -> Scalar<A> {
match s.contents {
DifferentiableHidden::Scalar(s) => s,
DifferentiableHidden::Vector(_) => panic!("not a vector"),
}
}
pub fn of_slice<A>(input: &[A]) -> Differentiable<A, 1>
where
A: Clone,
{
Differentiable {
contents: DifferentiableHidden::of_slice(input),
}
}
impl<A, const RANK: usize> Differentiable<A, RANK> {
pub fn of_vector(s: Vec<Differentiable<A, RANK>>) -> Differentiable<A, { RANK + 1 }> {
Differentiable {
contents: DifferentiableHidden::Vector(s.into_iter().map(|v| v.contents).collect()),
impl<A> RankedDifferentiable<A, 0> {
pub fn to_scalar(self) -> Scalar<A> {
match self.contents {
Differentiable::Scalar(s) => s,
Differentiable::Vector(_) => panic!("not a scalar despite teq that we're a scalar"),
}
}
pub fn map<B, F>(s: Differentiable<A, RANK>, f: &mut F) -> Differentiable<B, RANK>
pub fn of_scalar(s: Scalar<A>) -> RankedDifferentiable<A, 0> {
RankedDifferentiable {
contents: Differentiable::Scalar(s),
}
}
}
impl<A> RankedDifferentiable<A, 1> {
pub fn of_slice<T>(input: T) -> RankedDifferentiable<A, 1>
where
A: Clone,
T: AsRef<[A]>,
{
RankedDifferentiable {
contents: Differentiable::of_slice(input),
}
}
}
impl<A> RankedDifferentiable<A, 2> {
pub fn of_slice_2<T, const N: usize>(input: &[T]) -> RankedDifferentiable<A, 2>
where
A: Clone,
T: AsRef<[A]>,
{
let v = input
.iter()
.map(|x| Differentiable::of_slice(x))
.collect::<Vec<_>>();
RankedDifferentiable {
contents: Differentiable::Vector(v),
}
}
}
impl<A, const RANK: usize> RankedDifferentiable<A, RANK> {
pub fn to_unranked(self) -> Differentiable<A> {
self.contents
}
pub fn to_unranked_borrow(&self) -> &Differentiable<A> {
&self.contents
}
pub fn of_vector(
s: Vec<RankedDifferentiable<A, RANK>>,
) -> RankedDifferentiable<A, { RANK + 1 }> {
RankedDifferentiable {
contents: Differentiable::Vector(s.into_iter().map(|v| v.contents).collect()),
}
}
pub fn map<B, F>(
self: RankedDifferentiable<A, RANK>,
f: &mut F,
) -> RankedDifferentiable<B, RANK>
where
F: FnMut(Scalar<A>) -> Scalar<B>,
A: Clone,
{
Differentiable {
contents: DifferentiableHidden::map(&s.contents, f),
RankedDifferentiable {
contents: Differentiable::map(&self.contents, f),
}
}
pub fn map2<B, C, F>(
self: &Differentiable<A, RANK>,
other: &Differentiable<B, RANK>,
self: &RankedDifferentiable<A, RANK>,
other: &RankedDifferentiable<B, RANK>,
f: &F,
) -> Differentiable<C, RANK>
) -> RankedDifferentiable<C, RANK>
where
F: Fn(&Scalar<A>, &Scalar<B>) -> Scalar<C>,
A: Clone,
B: Clone,
{
Differentiable {
contents: DifferentiableHidden::map2(&self.contents, &other.contents, f),
RankedDifferentiable {
contents: Differentiable::map2(&self.contents, &other.contents, f),
}
}
pub fn to_vector(s: Differentiable<A, { RANK + 1 }>) -> Vec<Differentiable<A, RANK>> {
match s.contents {
DifferentiableHidden::Scalar(_) => panic!("not a scalar"),
DifferentiableHidden::Vector(v) => v
pub fn to_vector(
self: RankedDifferentiable<A, RANK>,
) -> Vec<RankedDifferentiable<A, { RANK - 1 }>> {
match self.contents {
Differentiable::Scalar(_) => panic!("not a scalar"),
Differentiable::Vector(v) => v
.into_iter()
.map(|v| Differentiable { contents: v })
.map(|v| RankedDifferentiable { contents: v })
.collect(),
}
}
}
pub fn grad<F>(f: F, theta: &Differentiable<A, RANK>) -> Differentiable<A, RANK>
where
F: Fn(Differentiable<A, RANK>) -> Differentiable<A, RANK>,
A: Clone
+ Hash
+ AddAssign
+ Mul<Output = A>
+ Exp
+ Div<Output = A>
+ Zero
+ One
+ Neg<Output = A>
+ Eq,
{
let mut i = 0usize;
let wrt = theta.contents.map(&mut |x| {
pub fn grad<A, F, const RANK: usize, const PARAM_RANK: usize>(
f: F,
theta: &[Differentiable<A>; PARAM_RANK],
) -> [Differentiable<A>; PARAM_RANK]
where
F: Fn(&[Differentiable<A>; PARAM_RANK]) -> RankedDifferentiable<A, RANK>,
A: ?Sized
+ Clone
+ Hash
+ AddAssign
+ Mul<Output = A>
+ Exp
+ Div<Output = A>
+ Zero
+ One
+ Neg<Output = A>
+ Eq,
{
let mut i = 0usize;
let wrt = theta.each_ref().map(|theta| {
theta.map(&mut |x| {
let result = Scalar::truncate_dual(x, Some(i));
i += 1;
result
});
let after_f = f(Differentiable {
contents: wrt.clone(),
});
Differentiable {
contents: DifferentiableHidden::grad_once(after_f.contents, &wrt),
}
}
})
});
let after_f = f(&wrt);
Differentiable::grad_once(after_f.contents, wrt)
}
#[cfg(test)]
mod tests {
use ordered_float::NotNan;
use crate::loss::{l2_loss_2, predict_line_2};
use crate::loss::{l2_loss_2, predict_line_2_unranked};
use super::*;
fn extract_scalar<'a, A>(d: &'a DifferentiableHidden<A>) -> &'a A {
fn extract_scalar<'a, A>(d: &'a Differentiable<A>) -> &'a A {
match d {
DifferentiableHidden::Scalar(a) => &(a.real_part()),
DifferentiableHidden::Vector(_) => panic!("not a scalar"),
Differentiable::Scalar(a) => &(a.real_part()),
Differentiable::Vector(_) => panic!("not a scalar"),
}
}
#[test]
fn test_map() {
let v = DifferentiableHidden::Vector(
let v = Differentiable::Vector(
vec![
DifferentiableHidden::Scalar(Scalar::Number(
Differentiable::Scalar(Scalar::Number(
NotNan::new(3.0).expect("3 is not NaN"),
Some(0usize),
)),
DifferentiableHidden::Scalar(Scalar::Number(
Differentiable::Scalar(Scalar::Number(
NotNan::new(4.0).expect("4 is not NaN"),
Some(1usize),
)),
@@ -306,8 +396,8 @@ mod tests {
});
let v = match mapped {
DifferentiableHidden::Scalar(_) => panic!("Not a scalar"),
DifferentiableHidden::Vector(v) => v
Differentiable::Scalar(_) => panic!("Not a scalar"),
Differentiable::Vector(v) => v
.iter()
.map(|d| extract_scalar(d).clone())
.collect::<Vec<_>>(),
@@ -318,26 +408,27 @@ mod tests {
#[test]
fn test_autodiff() {
let input_vec = of_slice(&[NotNan::<f64>::zero(), NotNan::<f64>::zero()]);
let input_vec = [
RankedDifferentiable::of_scalar(Scalar::<NotNan<f64>>::zero()).contents,
RankedDifferentiable::of_scalar(Scalar::<NotNan<f64>>::zero()).contents,
];
let xs = [2.0, 1.0, 4.0, 3.0].map(|x| NotNan::new(x).expect("not nan"));
let ys = [1.8, 1.2, 4.2, 3.3].map(|x| NotNan::new(x).expect("not nan"));
let grad = Differentiable::grad(
let grad = grad(
|x| {
Differentiable::of_vector(vec![of_scalar(l2_loss_2(
predict_line_2,
of_slice(&xs),
of_slice(&ys),
RankedDifferentiable::of_vector(vec![RankedDifferentiable::of_scalar(l2_loss_2(
predict_line_2_unranked,
RankedDifferentiable::of_slice(&xs),
RankedDifferentiable::of_slice(&ys),
x,
))])
},
&input_vec,
);
let grad_vec: Vec<f64> = Differentiable::to_vector(grad)
.into_iter()
.map(to_scalar)
.map(|x| f64::from(*x.real_part()))
.collect();
assert_eq!(grad_vec, vec![-63.0, -21.0]);
let grad_vec = grad
.map(Differentiable::into_scalar)
.map(|x| f64::from(*x.real_part()));
assert_eq!(grad_vec, [-63.0, -21.0]);
}
}

View File

@@ -0,0 +1,13 @@
use std::marker::PhantomData;
pub struct ConstTeq<const A: usize, const B: usize> {
phantom_a: PhantomData<[(); A]>,
phantom_b: PhantomData<[(); B]>,
}
pub fn make<const A: usize>() -> ConstTeq<A, A> {
ConstTeq {
phantom_a: Default::default(),
phantom_b: Default::default(),
}
}

View File

@@ -1,7 +1,9 @@
#![allow(incomplete_features)]
#![feature(generic_const_exprs)]
#![feature(array_methods)]
pub mod auto_diff;
pub mod const_teq;
pub mod expr_syntax_tree;
pub mod loss;
pub mod scalar;

View File

@@ -4,7 +4,7 @@ use std::{
};
use crate::{
auto_diff::{of_scalar, to_scalar, Differentiable},
auto_diff::{Differentiable, RankedDifferentiable},
scalar::Scalar,
traits::{One, Zero},
};
@@ -16,49 +16,61 @@ where
x.clone() * x.clone()
}
pub fn dot_2<A, const RANK: usize>(
x: &Differentiable<A, RANK>,
y: &Differentiable<A, RANK>,
) -> Differentiable<A, RANK>
pub fn elementwise_mul<A, const RANK: usize>(
x: &RankedDifferentiable<A, RANK>,
y: &RankedDifferentiable<A, RANK>,
) -> RankedDifferentiable<A, RANK>
where
A: Mul<Output = A> + Sum<<A as Mul>::Output> + Clone + Default,
{
RankedDifferentiable::map2(x, y, &|x, y| x.clone() * y.clone())
}
pub fn dot_unranked<A>(x: &Differentiable<A>, y: &Differentiable<A>) -> Differentiable<A>
where
A: Mul<Output = A> + Sum<<A as Mul>::Output> + Clone + Default,
{
Differentiable::map2(x, y, &|x, y| x.clone() * y.clone())
}
fn squared_2<A, const RANK: usize>(x: &Differentiable<A, RANK>) -> Differentiable<A, RANK>
fn squared_2<A, const RANK: usize>(
x: &RankedDifferentiable<A, RANK>,
) -> RankedDifferentiable<A, RANK>
where
A: Mul<Output = A> + Copy + Default,
{
Differentiable::map2(x, x, &|x, y| x.clone() * y.clone())
RankedDifferentiable::map2(x, x, &|x, y| x.clone() * y.clone())
}
fn sum_2<A>(x: Differentiable<A, 1>) -> Scalar<A>
fn sum_2<A>(x: RankedDifferentiable<A, 1>) -> Scalar<A>
where
A: Sum<A> + Clone + Add<Output = A> + Zero,
{
Differentiable::to_vector(x)
RankedDifferentiable::to_vector(x)
.into_iter()
.map(to_scalar)
.map(|x| x.to_scalar())
.sum()
}
fn l2_norm_2<A>(prediction: &Differentiable<A, 1>, data: &Differentiable<A, 1>) -> Scalar<A>
fn l2_norm_2<A>(
prediction: &RankedDifferentiable<A, 1>,
data: &RankedDifferentiable<A, 1>,
) -> Scalar<A>
where
A: Sum<A> + Mul<Output = A> + Copy + Default + Neg<Output = A> + Add<Output = A> + Zero + Neg,
{
let diff = Differentiable::map2(prediction, data, &|x, y| x.clone() - y.clone());
let diff = RankedDifferentiable::map2(prediction, data, &|x, y| x.clone() - y.clone());
sum_2(squared_2(&diff))
}
pub fn l2_loss_2<A, F, Params>(
pub fn l2_loss_2<A, F, Params, const N: usize>(
target: F,
data_xs: Differentiable<A, 1>,
data_ys: Differentiable<A, 1>,
data_xs: RankedDifferentiable<A, N>,
data_ys: RankedDifferentiable<A, 1>,
params: Params,
) -> Scalar<A>
where
F: Fn(Differentiable<A, 1>, Params) -> Differentiable<A, 1>,
F: Fn(RankedDifferentiable<A, N>, Params) -> RankedDifferentiable<A, 1>,
A: Sum<A> + Mul<Output = A> + Copy + Default + Neg<Output = A> + Add<Output = A> + Zero,
{
let pred_ys = target(data_xs, params);
@@ -66,42 +78,143 @@ where
}
pub fn predict_line_2<A>(
xs: Differentiable<A, 1>,
theta: Differentiable<A, 1>,
) -> Differentiable<A, 1>
xs: RankedDifferentiable<A, 1>,
theta: &[RankedDifferentiable<A, 0>; 2],
) -> RankedDifferentiable<A, 1>
where
A: Mul<Output = A> + Add<Output = A> + Sum<<A as Mul>::Output> + Copy + Default + One + Zero,
{
let xs = Differentiable::to_vector(xs)
let xs = RankedDifferentiable::to_vector(xs)
.into_iter()
.map(|v| to_scalar(v));
.map(|v| v.to_scalar());
let mut result = vec![];
for x in xs {
let left_arg = Differentiable::of_vector(vec![
of_scalar(x.clone()),
of_scalar(<Scalar<A> as One>::one()),
let left_arg = RankedDifferentiable::of_vector(vec![
RankedDifferentiable::of_scalar(x.clone()),
RankedDifferentiable::of_scalar(<Scalar<A> as One>::one()),
]);
let dotted = of_scalar(
Differentiable::to_vector(dot_2(&left_arg, &theta))
.iter()
.map(|x| to_scalar((*x).clone()))
.sum(),
let dotted = RankedDifferentiable::of_scalar(
RankedDifferentiable::to_vector(elementwise_mul(
&left_arg,
&RankedDifferentiable::of_vector(theta.to_vec()),
))
.iter()
.map(|x| (*x).clone().to_scalar())
.sum(),
);
result.push(dotted);
}
Differentiable::of_vector(result)
RankedDifferentiable::of_vector(result)
}
pub fn predict_line_2_unranked<A>(
xs: RankedDifferentiable<A, 1>,
theta: &[Differentiable<A>; 2],
) -> RankedDifferentiable<A, 1>
where
A: Mul<Output = A> + Add<Output = A> + Sum<<A as Mul>::Output> + Copy + Default + One + Zero,
{
let xs = RankedDifferentiable::to_vector(xs)
.into_iter()
.map(|v| v.to_scalar());
let mut result = vec![];
for x in xs {
let left_arg = RankedDifferentiable::of_vector(vec![
RankedDifferentiable::of_scalar(x.clone()),
RankedDifferentiable::of_scalar(<Scalar<A> as One>::one()),
]);
let dotted = RankedDifferentiable::of_scalar(
dot_unranked(
left_arg.to_unranked_borrow(),
&Differentiable::Vector(theta.to_vec()),
)
.into_vector()
.into_iter()
.map(|x| x.into_scalar())
.sum(),
);
result.push(dotted);
}
RankedDifferentiable::of_vector(result)
}
pub fn predict_quadratic<A>(
xs: Differentiable<A, 1>,
theta: Differentiable<A, 1>,
) -> Differentiable<A, 1>
xs: RankedDifferentiable<A, 1>,
theta: &[RankedDifferentiable<A, 0>; 3],
) -> RankedDifferentiable<A, 1>
where
A: Mul<Output = A> + Add<Output = A> + Sum + Default + One + Zero + Clone,
{
Differentiable::map(xs, &mut |x| {
RankedDifferentiable::map(xs, &mut |x| {
let x_powers = vec![Scalar::make(A::one()), x.clone(), square(&x)];
let x_powers = Differentiable::of_vector(x_powers.into_iter().map(of_scalar).collect());
sum_2(dot_2(&x_powers, &theta))
let x_powers = RankedDifferentiable::of_vector(
x_powers
.into_iter()
.map(RankedDifferentiable::of_scalar)
.collect(),
);
RankedDifferentiable::to_vector(elementwise_mul(
&x_powers,
&RankedDifferentiable::of_vector(theta.to_vec()),
))
.into_iter()
.map(|x| x.to_scalar())
.sum()
})
}
pub fn predict_quadratic_unranked<A>(
xs: RankedDifferentiable<A, 1>,
theta: &[Differentiable<A>; 3],
) -> RankedDifferentiable<A, 1>
where
A: Mul<Output = A> + Add<Output = A> + Sum + Default + One + Zero + Clone,
{
RankedDifferentiable::map(xs, &mut |x| {
let x_powers = vec![Scalar::make(A::one()), x.clone(), square(&x)];
let x_powers = RankedDifferentiable::of_vector(
x_powers
.into_iter()
.map(RankedDifferentiable::of_scalar)
.collect(),
);
dot_unranked(
x_powers.to_unranked_borrow(),
&Differentiable::Vector(theta.to_vec()),
)
.attach_rank::<1>()
.expect("wanted a tensor1")
.to_vector()
.into_iter()
.map(|x| x.to_scalar())
.sum()
})
}
// The parameters are: a tensor1 of length 2 (to be dotted with the input), and a scalar (to translate).
pub fn predict_plane<A>(
xs: RankedDifferentiable<A, 2>,
theta: &[Differentiable<A>; 2],
) -> RankedDifferentiable<A, 1>
where
A: Mul<Output = A> + Add<Output = A> + Sum + Default + One + Zero + Clone,
{
if theta[0].rank() != 1 {
panic!("theta0 must be of rank 1, got: {}", theta[0].rank())
}
let theta0 = RankedDifferentiable::of_vector(
theta[0]
.borrow_vector()
.iter()
.map(|v| RankedDifferentiable::of_scalar(v.borrow_scalar().clone()))
.collect::<Vec<_>>(),
);
let theta1 = theta[1].borrow_scalar().clone();
let dotted: Vec<_> = xs
.to_vector()
.into_iter()
.map(|point| sum_2(elementwise_mul(&theta0, &point)))
.map(|x| RankedDifferentiable::of_scalar(x + theta1.clone()))
.collect();
RankedDifferentiable::of_vector(dotted)
}

View File

@@ -9,4 +9,3 @@ edition = "2021"
immutable-chunkmap = "1.0.5"
ordered-float = "3.6.0"
little_learner = { path = "../little_learner" }
arrayvec = "0.7.2"

View File

@@ -6,9 +6,9 @@ mod with_tensor;
use core::hash::Hash;
use std::ops::{Add, AddAssign, Div, Mul, Neg};
use little_learner::auto_diff::{of_scalar, of_slice, to_scalar, Differentiable};
use little_learner::auto_diff::{grad, Differentiable, RankedDifferentiable};
use little_learner::loss::{l2_loss_2, predict_quadratic};
use little_learner::loss::{l2_loss_2, predict_plane};
use little_learner::scalar::Scalar;
use little_learner::traits::{Exp, One, Zero};
use ordered_float::NotNan;
@@ -24,16 +24,16 @@ where
v
}
struct GradientDescentHyper<A, const RANK: usize> {
struct GradientDescentHyper<A> {
learning_rate: A,
iterations: u32,
}
fn gradient_descent_step<A, F, const RANK: usize>(
fn gradient_descent_step<A, F, const RANK: usize, const PARAM_NUM: usize>(
f: &F,
theta: Differentiable<A, RANK>,
params: &GradientDescentHyper<A, RANK>,
) -> Differentiable<A, RANK>
theta: [Differentiable<A>; PARAM_NUM],
params: &GradientDescentHyper<A>,
) -> [Differentiable<A>; PARAM_NUM]
where
A: Clone
+ Mul<Output = A>
@@ -46,17 +46,33 @@ where
+ One
+ Eq
+ Exp,
F: Fn(Differentiable<A, RANK>) -> Differentiable<A, RANK>,
F: Fn(&[Differentiable<A>; PARAM_NUM]) -> RankedDifferentiable<A, RANK>,
{
let delta = Differentiable::grad(f, &theta);
Differentiable::map2(&theta, &delta, &|theta, delta| {
(*theta).clone() - (Scalar::make((params.learning_rate).clone()) * (*delta).clone())
let delta = grad(f, &theta);
let mut i = 0;
theta.map(|theta| {
let delta = &delta[i];
i += 1;
// For speed, you might want to truncate_dual this.
let learning_rate = Scalar::make((params.learning_rate).clone());
Differentiable::map2(
&theta,
&delta.map(&mut |s| s * learning_rate.clone()),
&|theta, delta| (*theta).clone() - (*delta).clone(),
)
})
}
fn main() {
let xs = [-1.0, 0.0, 1.0, 2.0, 3.0];
let ys = [2.55, 2.1, 4.35, 10.2, 18.25];
let plane_xs = [
[1.0, 2.05],
[1.0, 3.0],
[2.0, 2.0],
[2.0, 3.91],
[3.0, 6.13],
[4.0, 8.09],
];
let plane_ys = [13.99, 15.99, 18.0, 22.4, 30.2, 37.94];
let hyper = GradientDescentHyper {
learning_rate: NotNan::new(0.001).expect("not nan"),
@@ -64,48 +80,63 @@ fn main() {
};
let iterated = {
let xs = xs.map(|x| NotNan::new(x).expect("not nan"));
let ys = ys.map(|x| NotNan::new(x).expect("not nan"));
let xs = plane_xs.map(|x| {
[
NotNan::new(x[0]).expect("not nan"),
NotNan::new(x[1]).expect("not nan"),
]
});
let ys = plane_ys.map(|x| NotNan::new(x).expect("not nan"));
iterate(
&|theta| {
gradient_descent_step(
&|x| {
Differentiable::of_vector(vec![of_scalar(l2_loss_2(
predict_quadratic,
of_slice(&xs),
of_slice(&ys),
x,
))])
RankedDifferentiable::of_vector(vec![RankedDifferentiable::of_scalar(
l2_loss_2(
predict_plane,
RankedDifferentiable::of_slice_2::<_, 2>(&xs),
RankedDifferentiable::of_slice(ys),
x,
),
)])
},
theta,
&hyper,
)
},
of_slice(&[
NotNan::<f64>::zero(),
NotNan::<f64>::zero(),
NotNan::<f64>::zero(),
]),
[
RankedDifferentiable::of_slice([NotNan::zero(), NotNan::zero()]).to_unranked(),
Differentiable::Scalar(Scalar::zero()),
],
hyper.iterations,
)
};
println!(
"After iteration: {:?}",
Differentiable::to_vector(iterated)
let [theta0, theta1] = iterated;
let theta0 = theta0.attach_rank::<1>().expect("rank 1 tensor");
let theta1 = theta1.attach_rank::<0>().expect("rank 0 tensor");
assert_eq!(
theta0
.to_vector()
.into_iter()
.map(|x| to_scalar(x).real_part().into_inner())
.collect::<Vec<_>>()
.map(|x| x.to_scalar().real_part().into_inner())
.collect::<Vec<_>>(),
[3.97757644609063, 2.0496557321494446]
);
assert_eq!(
theta1.to_scalar().real_part().into_inner(),
5.786758464448078
);
}
#[cfg(test)]
mod tests {
use super::*;
use arrayvec::ArrayVec;
use little_learner::{
auto_diff::to_scalar,
loss::{predict_line_2, square},
auto_diff::grad,
loss::{l2_loss_2, predict_line_2, predict_line_2_unranked, predict_quadratic_unranked},
};
use crate::with_tensor::{l2_loss, predict_line};
@@ -116,9 +147,12 @@ mod tests {
let ys = [1.8, 1.2, 4.2, 3.3];
let loss = l2_loss_2(
predict_line_2,
of_slice(&xs),
of_slice(&ys),
of_slice(&[0.0, 0.0]),
RankedDifferentiable::of_slice(&xs),
RankedDifferentiable::of_slice(&ys),
&[
RankedDifferentiable::of_scalar(Scalar::zero()),
RankedDifferentiable::of_scalar(Scalar::zero()),
],
);
assert_eq!(*loss.real_part(), 33.21);
@@ -134,29 +168,39 @@ mod tests {
#[test]
fn grad_example() {
let input_vec = of_slice(&[NotNan::new(27.0).expect("not nan")]);
let input_vec = [Differentiable::Scalar(Scalar::make(
NotNan::new(27.0).expect("not nan"),
))];
let grad: Vec<_> = Differentiable::to_vector(Differentiable::grad(
|x| Differentiable::map(x, &mut |x| square(&x)),
let grad: Vec<_> = grad(
|x| {
RankedDifferentiable::of_scalar(
x[0].borrow_scalar().clone() * x[0].borrow_scalar().clone(),
)
},
&input_vec,
))
)
.into_iter()
.map(|x| to_scalar(x).real_part().into_inner())
.map(|x| x.into_scalar().real_part().into_inner())
.collect();
assert_eq!(grad, [54.0]);
}
#[test]
fn loss_gradient() {
let input_vec = of_slice(&[NotNan::<f64>::zero(), NotNan::<f64>::zero()]);
let zero = Scalar::<NotNan<f64>>::zero();
let input_vec = [
RankedDifferentiable::of_scalar(zero.clone()).to_unranked(),
RankedDifferentiable::of_scalar(zero).to_unranked(),
];
let xs = [2.0, 1.0, 4.0, 3.0].map(|x| NotNan::new(x).expect("not nan"));
let ys = [1.8, 1.2, 4.2, 3.3].map(|x| NotNan::new(x).expect("not nan"));
let grad = Differentiable::grad(
let grad = grad(
|x| {
Differentiable::of_vector(vec![of_scalar(l2_loss_2(
predict_line_2,
of_slice(&xs),
of_slice(&ys),
RankedDifferentiable::of_vector(vec![RankedDifferentiable::of_scalar(l2_loss_2(
predict_line_2_unranked,
RankedDifferentiable::of_slice(&xs),
RankedDifferentiable::of_slice(&ys),
x,
))])
},
@@ -164,9 +208,8 @@ mod tests {
);
assert_eq!(
Differentiable::to_vector(grad)
.into_iter()
.map(|x| *(to_scalar(x).real_part()))
grad.into_iter()
.map(|x| *(x.into_scalar().real_part()))
.collect::<Vec<_>>(),
[-63.0, -21.0]
);
@@ -174,13 +217,7 @@ mod tests {
#[test]
fn test_iterate() {
let f = |t: [i32; 3]| {
let mut vec = ArrayVec::<i32, 3>::new();
for i in t {
vec.push(i - 3);
}
vec.into_inner().unwrap()
};
let f = |t: [i32; 3]| t.map(|i| i - 3);
assert_eq!(iterate(&f, [1, 2, 3], 5u32), [-14, -13, -12]);
}
@@ -189,6 +226,8 @@ mod tests {
let xs = [2.0, 1.0, 4.0, 3.0];
let ys = [1.8, 1.2, 4.2, 3.3];
let zero = Scalar::<NotNan<f64>>::zero();
let hyper = GradientDescentHyper {
learning_rate: NotNan::new(0.01).expect("not nan"),
iterations: 1000,
@@ -200,24 +239,29 @@ mod tests {
&|theta| {
gradient_descent_step(
&|x| {
Differentiable::of_vector(vec![of_scalar(l2_loss_2(
predict_line_2,
of_slice(&xs),
of_slice(&ys),
x,
))])
RankedDifferentiable::of_vector(vec![RankedDifferentiable::of_scalar(
l2_loss_2(
predict_line_2_unranked,
RankedDifferentiable::of_slice(&xs),
RankedDifferentiable::of_slice(&ys),
x,
),
)])
},
theta,
&hyper,
)
},
of_slice(&[NotNan::<f64>::zero(), NotNan::<f64>::zero()]),
[
RankedDifferentiable::of_scalar(zero.clone()).to_unranked(),
RankedDifferentiable::of_scalar(zero).to_unranked(),
],
hyper.iterations,
)
};
let iterated = Differentiable::to_vector(iterated)
let iterated = iterated
.into_iter()
.map(|x| to_scalar(x).real_part().into_inner())
.map(|x| x.into_scalar().real_part().into_inner())
.collect::<Vec<_>>();
assert_eq!(iterated, vec![1.0499993623489503, 0.0000018747718457656533]);
@@ -228,6 +272,8 @@ mod tests {
let xs = [-1.0, 0.0, 1.0, 2.0, 3.0];
let ys = [2.55, 2.1, 4.35, 10.2, 18.25];
let zero = Scalar::<NotNan<f64>>::zero();
let hyper = GradientDescentHyper {
learning_rate: NotNan::new(0.001).expect("not nan"),
iterations: 1000,
@@ -240,35 +286,104 @@ mod tests {
&|theta| {
gradient_descent_step(
&|x| {
Differentiable::of_vector(vec![of_scalar(l2_loss_2(
predict_quadratic,
of_slice(&xs),
of_slice(&ys),
x,
))])
RankedDifferentiable::of_vector(vec![RankedDifferentiable::of_scalar(
l2_loss_2(
predict_quadratic_unranked,
RankedDifferentiable::of_slice(&xs),
RankedDifferentiable::of_slice(&ys),
x,
),
)])
},
theta,
&hyper,
)
},
of_slice(&[
NotNan::<f64>::zero(),
NotNan::<f64>::zero(),
NotNan::<f64>::zero(),
]),
[
RankedDifferentiable::of_scalar(zero.clone()).to_unranked(),
RankedDifferentiable::of_scalar(zero.clone()).to_unranked(),
RankedDifferentiable::of_scalar(zero).to_unranked(),
],
hyper.iterations,
)
};
let iterated = Differentiable::to_vector(iterated)
let iterated = iterated
.into_iter()
.map(|x| to_scalar(x).real_part().into_inner())
.map(|x| x.into_scalar().real_part().into_inner())
.collect::<Vec<_>>();
println!("{:?}", iterated);
assert_eq!(
iterated,
[2.0546423148479684, 0.9928606519360353, 1.4787394427094362]
);
}
#[test]
fn optimise_plane() {
let plane_xs = [
[1.0, 2.05],
[1.0, 3.0],
[2.0, 2.0],
[2.0, 3.91],
[3.0, 6.13],
[4.0, 8.09],
];
let plane_ys = [13.99, 15.99, 18.0, 22.4, 30.2, 37.94];
let hyper = GradientDescentHyper {
learning_rate: NotNan::new(0.001).expect("not nan"),
iterations: 1000,
};
let iterated = {
let xs = plane_xs.map(|x| {
[
NotNan::new(x[0]).expect("not nan"),
NotNan::new(x[1]).expect("not nan"),
]
});
let ys = plane_ys.map(|x| NotNan::new(x).expect("not nan"));
iterate(
&|theta| {
gradient_descent_step(
&|x| {
RankedDifferentiable::of_vector(vec![RankedDifferentiable::of_scalar(
l2_loss_2(
predict_plane,
RankedDifferentiable::of_slice_2::<_, 2>(&xs),
RankedDifferentiable::of_slice(ys),
x,
),
)])
},
theta,
&hyper,
)
},
[
RankedDifferentiable::of_slice([NotNan::zero(), NotNan::zero()]).to_unranked(),
Differentiable::Scalar(Scalar::zero()),
],
hyper.iterations,
)
};
let [theta0, theta1] = iterated;
let theta0 = theta0.attach_rank::<1>().expect("rank 1 tensor");
let theta1 = theta1.attach_rank::<0>().expect("rank 0 tensor");
assert_eq!(
theta0
.to_vector()
.into_iter()
.map(|x| x.to_scalar().real_part().into_inner())
.collect::<Vec<_>>(),
[3.97757644609063, 2.0496557321494446]
);
assert_eq!(
theta1.to_scalar().real_part().into_inner(),
5.786758464448078
);
}
}