Files
agdaproofs/Setoids/Orders/Total/Lemmas.agda
2020-04-18 17:47:27 +01:00

68 lines
2.0 KiB
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Orders.Total.Definition
open import Orders.Partial.Definition
open import Setoids.Setoids
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Functions.Definition
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Setoids.Orders.Total.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {c : _} {_<_ : A A Set c} {P : SetoidPartialOrder S _<_} (T : SetoidTotalOrder P) where
open SetoidTotalOrder T
open SetoidPartialOrder P
open Setoid S
open Equivalence eq
maxInequalitiesR : {a b c : A} (a < b) (a < c) (a < max b c)
maxInequalitiesR {a} {b} {c} a<b a<c with totality b c
... | inl (inl x) = a<c
... | inl (inr x) = a<b
... | inr x = a<c
minInequalitiesR : {a b c : A} (a < b) (a < c) (a < min b c)
minInequalitiesR {a} {b} {c} a<b a<c with totality b c
... | inl (inl x) = a<b
... | inl (inr x) = a<c
... | inr x = a<b
maxInequalitiesL : {a b c : A} (a < c) (b < c) (max a b < c)
maxInequalitiesL {a} {b} {c} a<b a<c with totality a b
... | inl (inl x) = a<c
... | inl (inr x) = a<b
... | inr x = a<c
minInequalitiesL : {a b c : A} (a < c) (b < c) (min a b < c)
minInequalitiesL {a} {b} {c} a<b a<c with totality a b
... | inl (inl x) = a<b
... | inl (inr x) = a<c
... | inr x = a<b
minLessL : (a b : A) min a b <= a
minLessL a b with totality a b
... | inl (inl x) = inr reflexive
... | inl (inr x) = inl x
... | inr x = inr reflexive
minLessR : (a b : A) min a b <= b
minLessR a b with totality a b
... | inl (inl x) = inl x
... | inl (inr x) = inr reflexive
... | inr x = inr x
maxGreaterL : (a b : A) a <= max a b
maxGreaterL a b with totality a b
... | inl (inl x) = inl x
... | inl (inr x) = inr reflexive
... | inr x = inr x
maxGreaterR : (a b : A) b <= max a b
maxGreaterR a b with totality a b
... | inl (inl x) = inr reflexive
... | inl (inr x) = inl x
... | inr x = inr reflexive