{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Orders.Total.Definition open import Orders.Partial.Definition open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Functions.Definition open import Sets.EquivalenceRelations open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Setoids.Orders.Total.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {c : _} {_<_ : A → A → Set c} {P : SetoidPartialOrder S _<_} (T : SetoidTotalOrder P) where open SetoidTotalOrder T open SetoidPartialOrder P open Setoid S open Equivalence eq maxInequalitiesR : {a b c : A} → (a < b) → (a < c) → (a < max b c) maxInequalitiesR {a} {b} {c} a