Files
agdaproofs/Groups/Groups.agda
2020-01-05 15:06:35 +00:00

38 lines
1.8 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Groups.Definition
open import Sets.EquivalenceRelations
module Groups.Groups where
reflGroupWellDefined : {lvl : _} {A : Set lvl} {m n x y : A} {op : A A A} m x n y (op m n) (op x y)
reflGroupWellDefined {lvl} {A} {m} {n} {.m} {.n} {op} refl refl = refl
fourWay+Associative : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_·_ : A A A} (G : Group S _·_) {r s t u : A} (Setoid.__ S) (r · ((s · t) · u)) ((r · s) · (t · u))
fourWay+Associative {S = S} {_·_} G {r} {s} {t} {u} = transitive p1 (transitive p2 p3)
where
open Group G renaming (inverse to _^-1)
open Setoid S
open Equivalence eq
p1 : r · ((s · t) · u) (r · (s · t)) · u
p2 : (r · (s · t)) · u ((r · s) · t) · u
p3 : ((r · s) · t) · u (r · s) · (t · u)
p1 = Group.+Associative G
p2 = Group.+WellDefined G (Group.+Associative G) reflexive
p3 = symmetric (Group.+Associative G)
fourWay+Associative' : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A A A} (G : Group S _·_) {a b c d : A} (Setoid.__ S (((a · b) · c) · d) (a · ((b · c) · d)))
fourWay+Associative' {S = S} G = transitive (symmetric +Associative) (symmetric (fourWay+Associative G))
where
open Group G
open Setoid S
open Equivalence eq
fourWay+Associative'' : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A A A} (G : Group S _·_) {a b c d : A} (Setoid.__ S (a · (b · (c · d))) (a · ((b · c) · d)))
fourWay+Associative'' {S = S} {_·_ = _·_} G = transitive +Associative (symmetric (fourWay+Associative G))
where
open Group G
open Setoid S
open Equivalence eq