{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Groups.Definition open import Sets.EquivalenceRelations module Groups.Groups where reflGroupWellDefined : {lvl : _} {A : Set lvl} {m n x y : A} {op : A → A → A} → m ≡ x → n ≡ y → (op m n) ≡ (op x y) reflGroupWellDefined {lvl} {A} {m} {n} {.m} {.n} {op} refl refl = refl fourWay+Associative : {a b : _} → {A : Set a} → {S : Setoid {a} {b} A} → {_·_ : A → A → A} → (G : Group S _·_) → {r s t u : A} → (Setoid._∼_ S) (r · ((s · t) · u)) ((r · s) · (t · u)) fourWay+Associative {S = S} {_·_} G {r} {s} {t} {u} = transitive p1 (transitive p2 p3) where open Group G renaming (inverse to _^-1) open Setoid S open Equivalence eq p1 : r · ((s · t) · u) ∼ (r · (s · t)) · u p2 : (r · (s · t)) · u ∼ ((r · s) · t) · u p3 : ((r · s) · t) · u ∼ (r · s) · (t · u) p1 = Group.+Associative G p2 = Group.+WellDefined G (Group.+Associative G) reflexive p3 = symmetric (Group.+Associative G) fourWay+Associative' : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A → A → A} (G : Group S _·_) {a b c d : A} → (Setoid._∼_ S (((a · b) · c) · d) (a · ((b · c) · d))) fourWay+Associative' {S = S} G = transitive (symmetric +Associative) (symmetric (fourWay+Associative G)) where open Group G open Setoid S open Equivalence eq fourWay+Associative'' : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A → A → A} (G : Group S _·_) {a b c d : A} → (Setoid._∼_ S (a · (b · (c · d))) (a · ((b · c) · d))) fourWay+Associative'' {S = S} {_·_ = _·_} G = transitive +Associative (symmetric (fourWay+Associative G)) where open Group G open Setoid S open Equivalence eq