mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-13 23:58:38 +00:00
33 lines
1.0 KiB
Agda
33 lines
1.0 KiB
Agda
{-# OPTIONS --safe --warning=error #-}
|
||
|
||
open import Fields
|
||
open import Rings
|
||
open import Functions
|
||
open import Orders
|
||
open import LogicalFormulae
|
||
open import Rationals
|
||
open import Naturals
|
||
|
||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||
|
||
module Reals where
|
||
record Subset {m n : _} (A : Set m) (B : Set n) : Set (m ⊔ n) where
|
||
field
|
||
inj : A → B
|
||
injInj : Injection inj
|
||
|
||
--record RealField {n : _} {A : Set n} {R : Ring A} {F : Field R} : Set _ where
|
||
-- field
|
||
-- orderedField : OrderedField F
|
||
-- open OrderedField orderedField
|
||
-- open TotalOrder ord
|
||
-- open Ring R
|
||
-- field
|
||
-- complete : {c : _} {C : Set c} → (S : Subset C A) → (upperBound : A) → ({s : C} → (Subset.inj S s) < upperBound) → Sg A (λ lub → ({s : C} → (Subset.inj S s) < lub) && ({s : C} → (Subset.inj S s) < upperBound → (Subset.inj S s) < lub))
|
||
|
||
|
||
record Real : Set where
|
||
field
|
||
f : ℕ → ℚ
|
||
converges : {ε : ℚ} → Sg ℕ (λ x → {y : ℕ} → x <N y → (f x) +Q (f y) <Q ε)
|