{-# OPTIONS --safe --warning=error #-} open import Fields open import Rings open import Functions open import Orders open import LogicalFormulae open import Rationals open import Naturals open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Reals where record Subset {m n : _} (A : Set m) (B : Set n) : Set (m ⊔ n) where field inj : A → B injInj : Injection inj --record RealField {n : _} {A : Set n} {R : Ring A} {F : Field R} : Set _ where -- field -- orderedField : OrderedField F -- open OrderedField orderedField -- open TotalOrder ord -- open Ring R -- field -- complete : {c : _} {C : Set c} → (S : Subset C A) → (upperBound : A) → ({s : C} → (Subset.inj S s) < upperBound) → Sg A (λ lub → ({s : C} → (Subset.inj S s) < lub) && ({s : C} → (Subset.inj S s) < upperBound → (Subset.inj S s) < lub)) record Real : Set where field f : ℕ → ℚ converges : {ε : ℚ} → Sg ℕ (λ x → {y : ℕ} → x