mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-08 21:38:40 +00:00
40 lines
1.0 KiB
Agda
40 lines
1.0 KiB
Agda
{-# OPTIONS --warning=error --safe --guardedness #-}
|
||
|
||
open import Setoids.Orders
|
||
open import LogicalFormulae
|
||
open import Rings.Definition
|
||
open import Numbers.Rationals.Definition
|
||
|
||
module Numbers.Reals.Definition where
|
||
|
||
open import Fields.CauchyCompletion.Definition ℚOrdered ℚField
|
||
open import Fields.CauchyCompletion.Setoid ℚOrdered ℚField ℚcharNot2
|
||
open import Fields.CauchyCompletion.Addition ℚOrdered ℚField ℚcharNot2
|
||
open import Fields.CauchyCompletion.Multiplication ℚOrdered ℚField ℚcharNot2
|
||
open import Fields.CauchyCompletion.Ring ℚOrdered ℚField ℚcharNot2
|
||
open import Fields.CauchyCompletion.Comparison ℚOrdered ℚField ℚcharNot2
|
||
|
||
ℝ : Set
|
||
ℝ = CauchyCompletion
|
||
|
||
_+R_ : ℝ → ℝ → ℝ
|
||
_+R_ = _+C_
|
||
|
||
_*R_ : ℝ → ℝ → ℝ
|
||
_*R_ = _*C_
|
||
|
||
ℝRing : Ring cauchyCompletionSetoid _+R_ _*R_
|
||
ℝRing = CRing
|
||
|
||
injectionR : ℚ → ℝ
|
||
injectionR = injection
|
||
|
||
0R : ℝ
|
||
0R = injection 0Q
|
||
|
||
_<R_ : ℝ → ℝ → Set
|
||
_<R_ = _<C_
|
||
|
||
ℝPartialOrder : SetoidPartialOrder cauchyCompletionSetoid _<C_
|
||
ℝPartialOrder = <COrder
|