{-# OPTIONS --warning=error --safe --guardedness #-} open import Setoids.Orders open import LogicalFormulae open import Rings.Definition open import Numbers.Rationals.Definition module Numbers.Reals.Definition where open import Fields.CauchyCompletion.Definition ℚOrdered ℚField open import Fields.CauchyCompletion.Setoid ℚOrdered ℚField ℚcharNot2 open import Fields.CauchyCompletion.Addition ℚOrdered ℚField ℚcharNot2 open import Fields.CauchyCompletion.Multiplication ℚOrdered ℚField ℚcharNot2 open import Fields.CauchyCompletion.Ring ℚOrdered ℚField ℚcharNot2 open import Fields.CauchyCompletion.Comparison ℚOrdered ℚField ℚcharNot2 ℝ : Set ℝ = CauchyCompletion _+R_ : ℝ → ℝ → ℝ _+R_ = _+C_ _*R_ : ℝ → ℝ → ℝ _*R_ = _*C_ ℝRing : Ring cauchyCompletionSetoid _+R_ _*R_ ℝRing = CRing injectionR : ℚ → ℝ injectionR = injection 0R : ℝ 0R = injection 0Q _