mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-06 04:18:40 +00:00
29 lines
1.3 KiB
Agda
29 lines
1.3 KiB
Agda
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
|
|
|
|
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
|
open import Setoids.Setoids
|
|
open import Rings.Definition
|
|
open import Rings.Orders.Partial.Definition
|
|
open import Rings.Orders.Total.Definition
|
|
open import Groups.Definition
|
|
open import Groups.Orders.Archimedean
|
|
open import Fields.Fields
|
|
open import Sets.EquivalenceRelations
|
|
open import Sequences
|
|
open import Setoids.Orders.Partial.Definition
|
|
open import Functions.Definition
|
|
open import LogicalFormulae
|
|
open import Numbers.Naturals.Semiring
|
|
open import Numbers.Naturals.Order
|
|
open import Fields.Orders.Total.Archimedean
|
|
|
|
module Fields.CauchyCompletion.Archimedean {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) (arch : ArchimedeanField {F = F} (record { oRing = pRing })) where
|
|
|
|
open import Fields.CauchyCompletion.Group order F
|
|
open import Fields.CauchyCompletion.Ring order F
|
|
open import Fields.CauchyCompletion.Comparison order F
|
|
open import Fields.CauchyCompletion.PartiallyOrderedRing order F
|
|
|
|
CArchimedean : Archimedean (toGroup CRing CpOrderedRing)
|
|
CArchimedean x y xPos yPos = {!!}
|