{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Setoids.Setoids open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Groups.Definition open import Groups.Orders.Archimedean open import Fields.Fields open import Sets.EquivalenceRelations open import Sequences open import Setoids.Orders.Partial.Definition open import Functions.Definition open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Fields.Orders.Total.Archimedean module Fields.CauchyCompletion.Archimedean {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) (arch : ArchimedeanField {F = F} (record { oRing = pRing })) where open import Fields.CauchyCompletion.Group order F open import Fields.CauchyCompletion.Ring order F open import Fields.CauchyCompletion.Comparison order F open import Fields.CauchyCompletion.PartiallyOrderedRing order F CArchimedean : Archimedean (toGroup CRing CpOrderedRing) CArchimedean x y xPos yPos = {!!}