Files
agdaproofs/Rings/Order.agda
2019-10-22 07:51:09 +01:00

45 lines
2.7 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Definition
open import Numbers.Naturals.Naturals
open import Setoids.Orders
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.Order {n m : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A A A} {_*_ : A A A} (R : Ring S _+_ _*_) where
open Ring R
open Group additiveGroup
open Setoid S
record OrderedRing {p : _} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} (order : SetoidTotalOrder pOrder) : Set (lsuc n m p) where
field
orderRespectsAddition : {a b : A} (a < b) (c : A) (a + c) < (b + c)
orderRespectsMultiplication : {a b : A} (0R < a) (0R < b) (0R < (a * b))
open SetoidPartialOrder pOrder
abs : A A
abs a with SetoidTotalOrder.totality order 0R a
abs a | inl (inl 0<a) = a
abs a | inl (inr a<0) = inverse a
abs a | inr 0=a = a
absWellDefined : (a b : A) a b abs a abs b
absWellDefined a b a=b with SetoidTotalOrder.totality order 0R a
absWellDefined a b a=b | inl (inl 0<a) with SetoidTotalOrder.totality order 0R b
absWellDefined a b a=b | inl (inl 0<a) | inl (inl 0<b) = a=b
absWellDefined a b a=b | inl (inl 0<a) | inl (inr b<0) = exFalso (irreflexive {0G} (transitive 0<a (<WellDefined (Equivalence.symmetric eq a=b) (Equivalence.reflexive eq) b<0)))
absWellDefined a b a=b | inl (inl 0<a) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq a=b (Equivalence.symmetric eq 0=b)) 0<a))
absWellDefined a b a=b | inl (inr a<0) with SetoidTotalOrder.totality order 0R b
absWellDefined a b a=b | inl (inr a<0) | inl (inl 0<b) = exFalso (irreflexive {0G} (transitive 0<b (<WellDefined a=b (Equivalence.reflexive eq) a<0)))
absWellDefined a b a=b | inl (inr a<0) | inl (inr b<0) = inverseWellDefined additiveGroup a=b
absWellDefined a b a=b | inl (inr a<0) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq a=b (Equivalence.symmetric eq 0=b)) (Equivalence.reflexive eq) a<0))
absWellDefined a b a=b | inr 0=a with SetoidTotalOrder.totality order 0R b
absWellDefined a b a=b | inr 0=a | inl (inl 0<b) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (Equivalence.transitive eq 0=a a=b)) 0<b))
absWellDefined a b a=b | inr 0=a | inl (inr b<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq 0=a a=b)) (Equivalence.reflexive eq) b<0))
absWellDefined a b a=b | inr 0=a | inr 0=b = a=b