{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Groups open import Groups.Definition open import Numbers.Naturals.Naturals open import Setoids.Orders open import Setoids.Setoids open import Functions open import Sets.EquivalenceRelations open import Rings.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.Order {n m : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A → A → A} {_*_ : A → A → A} (R : Ring S _+_ _*_) where open Ring R open Group additiveGroup open Setoid S record OrderedRing {p : _} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} (order : SetoidTotalOrder pOrder) : Set (lsuc n ⊔ m ⊔ p) where field orderRespectsAddition : {a b : A} → (a < b) → (c : A) → (a + c) < (b + c) orderRespectsMultiplication : {a b : A} → (0R < a) → (0R < b) → (0R < (a * b)) open SetoidPartialOrder pOrder abs : A → A abs a with SetoidTotalOrder.totality order 0R a abs a | inl (inl 0