Files
agdaproofs/Setoids/Orders/Partial/Sequences.agda
2020-04-19 13:40:22 +01:00

52 lines
2.6 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import LogicalFormulae
open import Orders.Total.Definition
open import Orders.Partial.Definition
open import Setoids.Setoids
open import Functions.Definition
open import Sequences
open import Setoids.Orders.Partial.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Setoids.Orders.Partial.Sequences {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_<_ : Rel {a} {c} A} (p : SetoidPartialOrder S _<_) where
open SetoidPartialOrder p
WeaklyIncreasing' : (Sequence A) Set (b c)
WeaklyIncreasing' s = (m n : ) (m <N n) (index s m) <= (index s n)
WeaklyIncreasing : (Sequence A) Set (b c)
WeaklyIncreasing s = (m : ) (index s m) <= index s (succ m)
tailRespectsWeaklyIncreasing : (a : Sequence A) WeaklyIncreasing a WeaklyIncreasing (Sequence.tail a)
tailRespectsWeaklyIncreasing a incr m = incr (succ m)
weaklyIncreasingImplies' : (a : Sequence A) WeaklyIncreasing a WeaklyIncreasing' a
weaklyIncreasingImplies' a x zero (succ zero) m<n = x 0
weaklyIncreasingImplies' a x zero (succ (succ n)) m<n = <=Transitive (weaklyIncreasingImplies' a x zero (succ n) (succIsPositive n)) (x (succ n))
weaklyIncreasingImplies' a x (succ m) (succ n) m<n = weaklyIncreasingImplies' (Sequence.tail a) (tailRespectsWeaklyIncreasing a x) m n (canRemoveSuccFrom<N m<n)
weaklyIncreasing'Implies : (a : Sequence A) WeaklyIncreasing' a WeaklyIncreasing a
weaklyIncreasing'Implies a incr m = incr m (succ m) (le 0 refl)
StrictlyIncreasing' : (Sequence A) Set (c)
StrictlyIncreasing' s = (m n : ) (m <N n) (index s m) < (index s n)
StrictlyIncreasing : (Sequence A) Set (c)
StrictlyIncreasing s = (m : ) (index s m) < index s (succ m)
tailRespectsStrictlyIncreasing : (a : Sequence A) StrictlyIncreasing a StrictlyIncreasing (Sequence.tail a)
tailRespectsStrictlyIncreasing a incr m = incr (succ m)
strictlyIncreasingImplies' : (a : Sequence A) StrictlyIncreasing a StrictlyIncreasing' a
strictlyIncreasingImplies' a x zero (succ zero) m<n = x 0
strictlyIncreasingImplies' a x zero (succ (succ n)) m<n = <Transitive (strictlyIncreasingImplies' a x zero (succ n) (succIsPositive n)) (x (succ n))
strictlyIncreasingImplies' a x (succ m) (succ n) m<n = strictlyIncreasingImplies' (Sequence.tail a) (tailRespectsStrictlyIncreasing a x) m n (canRemoveSuccFrom<N m<n)
strictlyIncreasing'Implies : (a : Sequence A) StrictlyIncreasing' a StrictlyIncreasing a
strictlyIncreasing'Implies a incr m = incr m (succ m) (le 0 refl)