{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import LogicalFormulae open import Orders.Total.Definition open import Orders.Partial.Definition open import Setoids.Setoids open import Functions.Definition open import Sequences open import Setoids.Orders.Partial.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Setoids.Orders.Partial.Sequences {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_<_ : Rel {a} {c} A} (p : SetoidPartialOrder S _<_) where open SetoidPartialOrder p WeaklyIncreasing' : (Sequence A) → Set (b ⊔ c) WeaklyIncreasing' s = (m n : ℕ) → (m