Files
agdaproofs/Fields/CauchyCompletion/BaseExpansion.agda
2020-04-11 19:46:26 +01:00

127 lines
7.6 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Lemmas
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Groups.Definition
open import Groups.Lemmas
open import Fields.Fields
open import Sets.EquivalenceRelations
open import Sequences
open import Setoids.Orders
open import Functions
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Numbers.Naturals.Order.Lemmas
open import Semirings.Definition
open import Numbers.Modulo.Definition
open import Orders.Total.Definition
module Fields.CauchyCompletion.BaseExpansion {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {_*_ : A A A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where
open Setoid S
open SetoidTotalOrder (TotallyOrderedRing.total order)
open SetoidPartialOrder pOrder
open Equivalence eq
open PartiallyOrderedRing pRing
open Ring R
open Group additiveGroup
open Field F
open import Fields.Orders.Limits.Definition {F = F} (record { oRing = order })
open import Fields.Orders.Total.Lemmas {F = F} (record { oRing = order })
open import Fields.Orders.Limits.Lemmas {F = F} (record { oRing = order })
open import Fields.Lemmas F
open import Fields.Orders.Lemmas {F = F} record { oRing = order }
open import Rings.Orders.Total.Lemmas order
open import Rings.Orders.Partial.Lemmas pRing
open import Fields.CauchyCompletion.Definition order F
open import Fields.CauchyCompletion.Setoid order F
open import Fields.CauchyCompletion.Addition order F
open import Fields.CauchyCompletion.Comparison order F
open import Fields.CauchyCompletion.Approximation order F
open import Rings.InitialRing R
open import Rings.Orders.Partial.Bounded pRing
open import Rings.Orders.Total.Bounded order
cauchyTimesBoundedIsCauchy : {s : Sequence A} cauchy s {t : Sequence A} Bounded t cauchy (apply _*_ s t)
cauchyTimesBoundedIsCauchy {s} cau {t} (K , bounded) e 0<e with allInvertible K (boundNonzero (K , bounded))
... | 1/K , prK with cau (1/K * e) (orderRespectsMultiplication (reciprocalPositive K 1/K (boundGreaterThanZero (K , bounded)) (transitive *Commutative prK)) 0<e)
... | N , cauPr = N , ans
where
ans : {m n : } (N<m : N <N m) (N<n : N <N n) (abs (index (apply _*_ s t) m + inverse (index (apply _*_ s t) n))) < e
ans N<m N<n with cauPr N<m N<n
... | r = {!!}
boundedTimesCauchyIsCauchy : {s : Sequence A} cauchy s {t : Sequence A} Bounded t cauchy (apply _*_ t s)
boundedTimesCauchyIsCauchy {s} cau {t} bou = cauchyWellDefined (ans s t) (cauchyTimesBoundedIsCauchy cau bou)
where
ans : (s t : Sequence A) (m : ) index (apply _*_ s t) m index (apply _*_ t s) m
ans s t m rewrite indexAndApply t s _*_ {m} | indexAndApply s t _*_ {m} = *Commutative
private
digitExpansionSeq : {n : } .(0<n : 0 <N n) Sequence (n n 0<n) Sequence A
Sequence.head (digitExpansionSeq {n} 0<n seq) = fromN (n.x (Sequence.head seq))
Sequence.tail (digitExpansionSeq {n} 0<n seq) = digitExpansionSeq 0<n (Sequence.tail seq)
powerSeq : (i : A) (start : A) Sequence A
Sequence.head (powerSeq i start) = start
Sequence.tail (powerSeq i start) = powerSeq i (start * i)
powerSeqInduction : (i : A) (start : A) (m : ) (index (powerSeq i start) (succ m)) i * (index (powerSeq i start) m)
powerSeqInduction i start zero = *Commutative
powerSeqInduction i start (succ m) = powerSeqInduction i (start * i) m
ofBaseExpansionSeq : {n : } .(0<n : 0 <N n) Sequence (n n 0<n) Sequence A
ofBaseExpansionSeq {succ n} 0<n seq = apply _*_ (digitExpansionSeq 0<n seq) (powerSeq pow pow)
where
pow : A
pow = underlying (allInvertible (fromN (succ n)) (charNotN n))
powerSeqPositive : {i : A} (0R < i) {s : A} (0R < s) (m : ) 0R < index (powerSeq i s) m
powerSeqPositive {i} 0<i {s} 0<s zero = 0<s
powerSeqPositive {i} 0<i {s} 0<s (succ m) = <WellDefined reflexive (symmetric (powerSeqInduction i s m)) (orderRespectsMultiplication 0<i (powerSeqPositive 0<i 0<s m))
powerSeqConvergesTo0 : (i : A) (0R < i) (i < 1R) {s : A} (0R < s) (powerSeq i s) ~> 0G
powerSeqConvergesTo0 i 0<i i<1 {s} 0<s e 0<e = {!!}
powerSeqConverges : (i : A) (0R < i) (i < 1R) {s : A} (0R < s) cauchy (powerSeq i s)
powerSeqConverges i 0<i i<1 {s} 0<s = convergentSequenceCauchy nontrivial {r = 0R} (powerSeqConvergesTo0 i 0<i i<1 0<s)
0<n : {n : } 1 <N n 0 <N n
0<n 1<n = TotalOrder.<Transitive TotalOrder (le 0 refl) 1<n
digitExpansionBoundedLemma : {n : } .(0<n : 0 <N n) (seq : Sequence (n n 0<n)) (m : ) index (digitExpansionSeq _ seq) m < fromN n
digitExpansionBoundedLemma {n} 0<n seq zero with Sequence.head seq
... | record { x = x ; xLess = xLess } = fromNPreservesOrder nontrivial {x} {n} ((squash<N xLess))
digitExpansionBoundedLemma 0<n seq (succ m) = digitExpansionBoundedLemma 0<n (Sequence.tail seq) m
digitExpansionBoundedLemma2 : {n : } .(0<n : 0 <N n) (seq : Sequence (n n 0<n)) (m : ) inverse (fromN n) < index (digitExpansionSeq 0<n seq) m
digitExpansionBoundedLemma2 {n} 0<n seq zero = <WellDefined identLeft (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invRight) identRight)) (orderRespectsAddition {_} {fromN (n.x (Sequence.head seq)) + fromN n} (<WellDefined reflexive (fromNPreserves+ (n.x (Sequence.head seq)) n) (fromNPreservesOrder nontrivial {0} {n.x (Sequence.head seq) +N n} (canAddToOneSideOfInequality' _ (squash<N 0<n)))) (inverse (fromN n)))
digitExpansionBoundedLemma2 0<n seq (succ m) = digitExpansionBoundedLemma2 0<n (Sequence.tail seq) m
digitExpansionBounded : {n : } .(0<n : 0 <N n) (seq : Sequence (n n 0<n)) Bounded (digitExpansionSeq 0<n seq)
digitExpansionBounded {n} 0<n seq = fromN n , λ m ((digitExpansionBoundedLemma2 0<n seq m) ,, digitExpansionBoundedLemma 0<n seq m)
private
1/nPositive : (n : ) 0R < underlying (allInvertible (fromN (succ n)) (charNotN n))
1/nPositive n with allInvertible (fromN (succ n)) (charNotN n)
... | a , b = reciprocalPositive (fromN (succ n)) a (fromNPreservesOrder nontrivial (succIsPositive n)) (transitive *Commutative b)
1/n<1 : (n : ) (0 <N n) underlying (allInvertible (fromN (succ n)) (charNotN n)) < 1R
1/n<1 n 1<n with allInvertible (fromN (succ n)) (charNotN n)
... | a , b = reciprocal<1 (fromN (succ n)) a (<WellDefined identRight reflexive (fromNPreservesOrder nontrivial {1} {succ n} (succPreservesInequality 1<n))) (transitive *Commutative b)
-- Construct the real that is the given base-n expansion between 0 and 1.
ofBaseExpansion : {n : } .(1<n : 1 <N n) (fromN n 0R False) Sequence (n n (0<n 1<n)) CauchyCompletion
ofBaseExpansion {succ n} 1<n charNotN seq = record { elts = ofBaseExpansionSeq (0<n 1<n) seq ; converges = boundedTimesCauchyIsCauchy (powerSeqConverges _ (1/nPositive n) (1/n<1 n (canRemoveSuccFrom<N (squash<N 1<n))) (1/nPositive n)) (digitExpansionBounded (0<n 1<n) seq)}
toBaseExpansion : {n : } .(1<n : 1 <N n) (fromN n 0R False) CauchyCompletion Sequence (n n (0<n 1<n))
toBaseExpansion {n} 1<n charNotN c = {!!}
baseExpansionProof : {n : } .{1<n : 1 <N n} {charNotN : fromN n 0R False} (as : CauchyCompletion) Setoid.__ cauchyCompletionSetoid (ofBaseExpansion 1<n charNotN (toBaseExpansion 1<n charNotN as)) as
baseExpansionProof = {!!}