{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Setoids.Setoids open import Rings.Definition open import Rings.Lemmas open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Groups.Definition open import Groups.Lemmas open import Fields.Fields open import Sets.EquivalenceRelations open import Sequences open import Setoids.Orders open import Functions open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas open import Semirings.Definition open import Numbers.Modulo.Definition open import Orders.Total.Definition module Fields.CauchyCompletion.BaseExpansion {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where open Setoid S open SetoidTotalOrder (TotallyOrderedRing.total order) open SetoidPartialOrder pOrder open Equivalence eq open PartiallyOrderedRing pRing open Ring R open Group additiveGroup open Field F open import Fields.Orders.Limits.Definition {F = F} (record { oRing = order }) open import Fields.Orders.Total.Lemmas {F = F} (record { oRing = order }) open import Fields.Orders.Limits.Lemmas {F = F} (record { oRing = order }) open import Fields.Lemmas F open import Fields.Orders.Lemmas {F = F} record { oRing = order } open import Rings.Orders.Total.Lemmas order open import Rings.Orders.Partial.Lemmas pRing open import Fields.CauchyCompletion.Definition order F open import Fields.CauchyCompletion.Setoid order F open import Fields.CauchyCompletion.Addition order F open import Fields.CauchyCompletion.Comparison order F open import Fields.CauchyCompletion.Approximation order F open import Rings.InitialRing R open import Rings.Orders.Partial.Bounded pRing open import Rings.Orders.Total.Bounded order cauchyTimesBoundedIsCauchy : {s : Sequence A} → cauchy s → {t : Sequence A} → Bounded t → cauchy (apply _*_ s t) cauchyTimesBoundedIsCauchy {s} cau {t} (K , bounded) e 0 0G powerSeqConvergesTo0 i 0