Files
agdaproofs/Rings/Units/Lemmas.agda
2019-12-07 18:53:08 +00:00

23 lines
794 B
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Rings.Homomorphisms.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.Units.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} (R : Ring S _+_ _*_) where
open import Rings.Units.Definition R
open import Rings.Ideals.Definition R
open Ring R
open Setoid S
open Equivalence eq
unitImpliesGeneratedIdealEverything : {x : A} Unit x {y : A} generatedIdealPred x y
unitImpliesGeneratedIdealEverything {x} (a , xa=1) {y} = (a * y) , transitive *Associative (transitive (*WellDefined xa=1 reflexive) identIsIdent)