{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Functions open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Homomorphisms.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.Units.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where open import Rings.Units.Definition R open import Rings.Ideals.Definition R open Ring R open Setoid S open Equivalence eq unitImpliesGeneratedIdealEverything : {x : A} → Unit x → {y : A} → generatedIdealPred x y unitImpliesGeneratedIdealEverything {x} (a , xa=1) {y} = (a * y) , transitive *Associative (transitive (*WellDefined xa=1 reflexive) identIsIdent)