Mostly show sqrt 2 is irrational (#53)

This commit is contained in:
Patrick Stevens
2019-10-22 20:56:58 +01:00
committed by GitHub
parent 6eaa181104
commit f5f4cf1376
8 changed files with 244 additions and 37 deletions

View File

@@ -10,28 +10,33 @@ open import Setoids.Setoids
open import Setoids.Orders
open import Sets.EquivalenceRelations
module Rings.Lemmas where
module Rings.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} (R : Ring S _+_ _*_) where
ringMinusExtracts : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} (R : Ring S _+_ _*_) {x y : A} Setoid.__ S (x * Group.inverse (Ring.additiveGroup R) y) (Group.inverse (Ring.additiveGroup R) (x * y))
ringMinusExtracts {S = S} {_+_ = _+_} {_*_ = _*_} R {x = x} {y} = transferToRight' additiveGroup (transitive (symmetric *DistributesOver+) (transitive (*WellDefined reflexive invLeft) (Ring.timesZero R)))
open Setoid S
open Ring R
open Group additiveGroup
ringMinusExtracts : {x y : A} Setoid.__ S (x * Group.inverse (Ring.additiveGroup R) y) (Group.inverse (Ring.additiveGroup R) (x * y))
ringMinusExtracts {x = x} {y} = transferToRight' additiveGroup (transitive (symmetric *DistributesOver+) (transitive (*WellDefined reflexive invLeft) (Ring.timesZero R)))
where
open Equivalence eq
ringMinusExtracts' : {x y : A} Setoid.__ S ((Group.inverse (Ring.additiveGroup R) x) * y) (Group.inverse (Ring.additiveGroup R) (x * y))
ringMinusExtracts' {x = x} {y} = transitive *Commutative (transitive ringMinusExtracts (inverseWellDefined additiveGroup *Commutative))
where
open Equivalence eq
twoNegativesTimes : {a b : A} (inverse a) * (inverse b) a * b
twoNegativesTimes {a} {b} = transitive (ringMinusExtracts) (transitive (inverseWellDefined additiveGroup ringMinusExtracts') (invTwice additiveGroup (a * b)))
where
open Setoid S
open Equivalence eq
open Ring R
open Group additiveGroup
groupLemmaMove0G : {a b : _} {A : Set a} {_·_ : A A A} {S : Setoid {a} {b} A} (G : Group S _·_) {x : A} (Setoid.__ S (Group.0G G) (Group.inverse G x)) Setoid.__ S x (Group.0G G)
groupLemmaMove0G {S = S} G {x} pr = transitive (symmetric (invInv G)) (transitive (symmetric p) (invIdent G))
where
open Group G
open Setoid S
open Equivalence eq
p : inverse 0G inverse (inverse x)
open Equivalence (Setoid.eq S)
p : Setoid.__ S (Group.inverse G (Group.0G G)) (Group.inverse G (Group.inverse G x))
p = inverseWellDefined G pr
groupLemmaMove0G' : {a b : _} {A : Set a} {_·_ : A A A} {S : Setoid {a} {b} A} (G : Group S _·_) {x : A} Setoid.__ S x (Group.0G G) (Setoid.__ S (Group.0G G) (Group.inverse G x))
groupLemmaMove0G' {S = S} G {x} pr = transferToRight' G (transitive identLeft pr)
where
open Group G
open Setoid S
open Equivalence eq
groupLemmaMove0G' {S = S} G {x} pr = transferToRight' G (Equivalence.transitive (Setoid.eq S) (Group.identLeft G) pr)

View File

@@ -10,7 +10,6 @@ open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Rings.Lemmas
open import Rings.Order
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
@@ -24,6 +23,9 @@ open SetoidTotalOrder tOrder
open Ring R
open Group additiveGroup
open import Rings.Lemmas R
ringAddInequalities : {w x y z : A} w < x y < z (w + y) < (x + z)
ringAddInequalities {w = w} {x} {y} {z} w<x y<z = transitive (orderRespectsAddition w<x y) (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition y<z x))
@@ -131,7 +133,7 @@ ringCanMultiplyByPositive {x} {y} {c} 0<c x<y = SetoidPartialOrder.<WellDefined
p1 : 0R < ((y * c) + ((Group.inverse additiveGroup x) * c))
p1 = SetoidPartialOrder.<WellDefined pOrder reflexive (Equivalence.transitive eq *Commutative (Equivalence.transitive eq *DistributesOver+ ((Group.+WellDefined additiveGroup) *Commutative *Commutative))) (OrderedRing.orderRespectsMultiplication order have 0<c)
p' : 0R < ((y * c) + (Group.inverse additiveGroup (x * c)))
p' = SetoidPartialOrder.<WellDefined pOrder reflexive (Group.+WellDefined additiveGroup reflexive (Equivalence.transitive eq (Equivalence.transitive eq *Commutative (ringMinusExtracts R)) (inverseWellDefined additiveGroup *Commutative))) p1
p' = SetoidPartialOrder.<WellDefined pOrder reflexive (Group.+WellDefined additiveGroup reflexive (Equivalence.transitive eq (Equivalence.transitive eq *Commutative ringMinusExtracts) (inverseWellDefined additiveGroup *Commutative))) p1
q : (0R + (x * c)) < (((y * c) + (Group.inverse additiveGroup (x * c))) + (x * c))
q = OrderedRing.orderRespectsAddition order p' (x * c)
q' : (x * c) < ((y * c) + 0R)
@@ -144,7 +146,7 @@ ringCanCancelPositive {x} {y} {c} 0<c xc<yc = SetoidPartialOrder.<WellDefined pO
have : 0R < ((y * c) + (Group.inverse additiveGroup (x * c)))
have = SetoidPartialOrder.<WellDefined pOrder (Group.invRight additiveGroup) reflexive (OrderedRing.orderRespectsAddition order xc<yc (Group.inverse additiveGroup _))
p1 : 0R < ((y * c) + ((Group.inverse additiveGroup x) * c))
p1 = SetoidPartialOrder.<WellDefined pOrder reflexive (Group.+WellDefined additiveGroup reflexive (symmetric (Equivalence.transitive eq (*Commutative) (Equivalence.transitive eq (ringMinusExtracts R) (inverseWellDefined additiveGroup *Commutative))))) have
p1 = SetoidPartialOrder.<WellDefined pOrder reflexive (Group.+WellDefined additiveGroup reflexive (symmetric (Equivalence.transitive eq (*Commutative) (Equivalence.transitive eq ringMinusExtracts (inverseWellDefined additiveGroup *Commutative))))) have
q : 0R < ((y + Group.inverse additiveGroup x) * c)
q = SetoidPartialOrder.<WellDefined pOrder reflexive (Equivalence.transitive eq (Equivalence.transitive eq (Group.+WellDefined additiveGroup *Commutative *Commutative) (symmetric *DistributesOver+)) *Commutative) p1
q' : 0R < (y + Group.inverse additiveGroup x)
@@ -197,7 +199,7 @@ ringCanMultiplyByNegative {x} {y} {c} c<0 x<y = ringSwapNegatives u
t : (x * Group.inverse additiveGroup c) < (y * Group.inverse additiveGroup c)
t = ringCanMultiplyByPositive 0<-c x<y
u : (Group.inverse additiveGroup (x * c)) < Group.inverse additiveGroup (y * c)
u = SetoidPartialOrder.<WellDefined pOrder (ringMinusExtracts R) (ringMinusExtracts R) t
u = SetoidPartialOrder.<WellDefined pOrder ringMinusExtracts ringMinusExtracts t
ringCanCancelNegative : {x y c : A} c < (Ring.0R R) (x * c) < (y * c) y < x
ringCanCancelNegative {x} {y} {c} c<0 xc<yc = r
@@ -206,7 +208,7 @@ ringCanCancelNegative {x} {y} {c} c<0 xc<yc = r
p0 : 0R < ((y * c) + inverse (x * c))
p0 = SetoidPartialOrder.<WellDefined pOrder invRight reflexive (OrderedRing.orderRespectsAddition order xc<yc (inverse (x * c)))
p1 : 0R < ((y * c) + ((inverse x) * c))
p1 = SetoidPartialOrder.<WellDefined pOrder reflexive (Group.+WellDefined additiveGroup reflexive (Equivalence.transitive eq (inverseWellDefined additiveGroup *Commutative) (Equivalence.transitive eq (symmetric (ringMinusExtracts R)) *Commutative))) p0
p1 = SetoidPartialOrder.<WellDefined pOrder reflexive (Group.+WellDefined additiveGroup reflexive (Equivalence.transitive eq (inverseWellDefined additiveGroup *Commutative) (Equivalence.transitive eq (symmetric ringMinusExtracts) *Commutative))) p0
p2 : 0R < ((y + inverse x) * c)
p2 = SetoidPartialOrder.<WellDefined pOrder reflexive (Equivalence.transitive eq (Group.+WellDefined additiveGroup *Commutative *Commutative) (Equivalence.transitive eq (symmetric *DistributesOver+) *Commutative)) p1
q : (y + inverse x) < 0R
@@ -243,3 +245,54 @@ absNegation a | inr 0=a with totality 0G (inverse a)
absNegation a | inr 0=a | inl (inl 0<-a) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=a)) (invIdent additiveGroup)) 0<-a))
absNegation a | inr 0=a | inl (inr -a<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=a)) (invIdent additiveGroup)) (Equivalence.reflexive eq) -a<0))
absNegation a | inr 0=a | inr 0=-a = Equivalence.transitive eq (Equivalence.symmetric eq 0=a) 0=-a
lemm4 : (a b : A) (0G < a) (b < 0G) (a * b) < 0G
lemm4 a b 0<a b<0 with orderRespectsMultiplication 0<a (lemm2 _ b<0)
... | bl = <WellDefined (invTwice additiveGroup _) (Equivalence.reflexive eq) (lemm2' _ (<WellDefined (Equivalence.reflexive eq) ringMinusExtracts bl))
lemm5 : (a b : A) (a < 0G) (b < 0G) 0G < (a * b)
lemm5 a b a<0 b<0 with orderRespectsMultiplication (lemm2 _ a<0) (lemm2 _ b<0)
... | bl = <WellDefined (Equivalence.reflexive eq) twoNegativesTimes bl
absRespectsTimes : (a b : A) abs (a * b) (abs a) * (abs b)
absRespectsTimes a b with totality 0R a
absRespectsTimes a b | inl (inl 0<a) with totality 0R b
absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) with totality 0R (a * b)
absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) | inl (inl 0<ab) = Equivalence.reflexive eq
absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) | inl (inr ab<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.transitive pOrder (orderRespectsMultiplication 0<a 0<b) ab<0))
absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) | inr 0=ab = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=ab) (orderRespectsMultiplication 0<a 0<b)))
absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) with totality 0R (a * b)
absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) | inl (inl 0<ab) with <WellDefined (Equivalence.reflexive eq) ringMinusExtracts (orderRespectsMultiplication 0<a (lemm2 b b<0))
... | bl = exFalso (irreflexive {0G} (SetoidPartialOrder.transitive pOrder 0<ab (<WellDefined (invTwice additiveGroup _) (Equivalence.reflexive eq) (lemm2' _ bl))))
absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) | inl (inr ab<0) = Equivalence.symmetric eq ringMinusExtracts
absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) | inr 0=ab = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq 0=ab) (Equivalence.reflexive eq) (lemm4 a b 0<a b<0)))
absRespectsTimes a b | inl (inl 0<a) | inr 0=b with totality 0R (a * b)
absRespectsTimes a b | inl (inl 0<a) | inr 0=b | inl (inl 0<ab) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (timesZero {a})) 0<ab))
absRespectsTimes a b | inl (inl 0<a) | inr 0=b | inl (inr ab<0) = exFalso ((irreflexive {0G} (<WellDefined (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (timesZero {a})) (Equivalence.reflexive eq) ab<0)))
absRespectsTimes a b | inl (inl 0<a) | inr 0=b | inr 0=ab = Equivalence.reflexive eq
absRespectsTimes a b | inl (inr a<0) with totality 0R b
absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) with totality 0R (a * b)
absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) | inl (inl 0<ab) = exFalso (irreflexive {0G} (SetoidPartialOrder.transitive pOrder 0<ab (<WellDefined *Commutative (Equivalence.reflexive eq) (lemm4 b a 0<b a<0))))
absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) | inl (inr ab<0) = Equivalence.symmetric eq ringMinusExtracts'
absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) | inr 0=ab = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq 0=ab *Commutative)) (Equivalence.reflexive eq) (lemm4 b a 0<b a<0)))
absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) with totality 0R (a * b)
absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) | inl (inl 0<ab) = Equivalence.symmetric eq twoNegativesTimes
absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) | inl (inr ab<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.transitive pOrder (lemm5 a b a<0 b<0) ab<0))
absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) | inr 0=ab = exFalso (exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=ab) (lemm5 a b a<0 b<0))))
absRespectsTimes a b | inl (inr a<0) | inr 0=b with totality 0R (a * b)
absRespectsTimes a b | inl (inr a<0) | inr 0=b | inl (inl 0<ab) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (timesZero {a})) 0<ab))
absRespectsTimes a b | inl (inr a<0) | inr 0=b | inl (inr ab<0) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) timesZero) (Equivalence.reflexive eq) ab<0))
absRespectsTimes a b | inl (inr a<0) | inr 0=b | inr 0=ab = Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (Equivalence.transitive eq (Equivalence.transitive eq timesZero (Equivalence.symmetric eq timesZero)) (*WellDefined (Equivalence.reflexive eq) 0=b))
absRespectsTimes a b | inr 0=a with totality 0R b
absRespectsTimes a b | inr 0=a | inl (inl 0<b) with totality 0R (a * b)
absRespectsTimes a b | inr 0=a | inl (inl 0<b) | inl (inl 0<ab) = Equivalence.reflexive eq
absRespectsTimes a b | inr 0=a | inl (inl 0<b) | inl (inr ab<0) = Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) (Equivalence.transitive eq *Commutative timesZero))) (invIdent additiveGroup)) (Equivalence.transitive eq (Equivalence.symmetric eq timesZero) *Commutative)) (*WellDefined 0=a (Equivalence.reflexive eq))
absRespectsTimes a b | inr 0=a | inl (inl 0<b) | inr 0=ab = Equivalence.reflexive eq
absRespectsTimes a b | inr 0=a | inl (inr b<0) with totality 0R (a * b)
absRespectsTimes a b | inr 0=a | inl (inr b<0) | inl (inl 0<ab) = Equivalence.transitive eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) *Commutative) (Equivalence.transitive eq timesZero (Equivalence.transitive eq (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative timesZero)) (*WellDefined 0=a (Equivalence.reflexive eq))))
absRespectsTimes a b | inr 0=a | inl (inr b<0) | inl (inr ab<0) = Equivalence.symmetric eq ringMinusExtracts
absRespectsTimes a b | inr 0=a | inl (inr b<0) | inr 0=ab = Equivalence.transitive eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) *Commutative) (Equivalence.transitive eq timesZero (Equivalence.transitive eq (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative timesZero)) (*WellDefined 0=a (Equivalence.reflexive eq))))
absRespectsTimes a b | inr 0=a | inr 0=b with totality 0R (a * b)
absRespectsTimes a b | inr 0=a | inr 0=b | inl (inl 0<ab) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) timesZero) 0<ab))
absRespectsTimes a b | inr 0=a | inr 0=b | inl (inr ab<0) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) timesZero) (Equivalence.reflexive eq) ab<0))
absRespectsTimes a b | inr 0=a | inr 0=b | inr 0=ab = Equivalence.reflexive eq