diff --git a/Everything/Safe.agda b/Everything/Safe.agda index bb61097..4f7a617 100644 --- a/Everything/Safe.agda +++ b/Everything/Safe.agda @@ -53,6 +53,7 @@ open import Monoids.Definition open import Semirings.Definition open import Semirings.Solver -open import CauchyCompletion +open import Fields.CauchyCompletion.Definition +open import Fields.CauchyCompletion.Addition module Everything.Safe where diff --git a/Everything/WithK.agda b/Everything/WithK.agda index 2dd6eb9..4651bc2 100644 --- a/Everything/WithK.agda +++ b/Everything/WithK.agda @@ -5,6 +5,7 @@ open import Numbers.Primes.PrimeNumbers open import Numbers.Primes.IntegerFactorisation open import Numbers.Rationals +open import Numbers.RationalsLemmas open import Logic.PropositionalLogic open import Logic.PropositionalLogicExamples diff --git a/CauchyCompletion.agda b/Fields/CauchyCompletion/Addition.agda similarity index 78% rename from CauchyCompletion.agda rename to Fields/CauchyCompletion/Addition.agda index ecf63e5..956c461 100644 --- a/CauchyCompletion.agda +++ b/Fields/CauchyCompletion/Addition.agda @@ -15,7 +15,7 @@ open import Functions open import LogicalFormulae open import Numbers.Naturals.Naturals -module CauchyCompletion {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} (tOrder : SetoidTotalOrder {_<_ = _<_} pOrder) {R : Ring S _+_ _*_} (order : OrderedRing R tOrder) (F : Field R) (charNot2 : Setoid._∼_ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) → False) where +module Fields.CauchyCompletion.Addition {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {tOrder : SetoidTotalOrder {_<_ = _<_} pOrder} {R : Ring S _+_ _*_} (order : OrderedRing R tOrder) (F : Field R) (charNot2 : Setoid._∼_ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) → False) where open Setoid S open SetoidTotalOrder tOrder @@ -26,23 +26,9 @@ open Ring R open Group additiveGroup open Field F +open import Fields.CauchyCompletion.Definition order F open import Rings.Orders.Lemmas(order) -cauchy : Sequence A → Set (m ⊔ o) -cauchy s = ∀ (ε : A) → (0R < ε) → Sg ℕ (λ N → ∀ {m n : ℕ} → (N