Hide more stuff (#124)

This commit is contained in:
Patrick Stevens
2020-04-19 07:54:37 +01:00
committed by GitHub
parent 3afdc6d45b
commit e660eceb43
11 changed files with 348 additions and 346 deletions

View File

@@ -26,3 +26,8 @@ boolAnd BoolFalse y = BoolFalse
boolOr : Bool Bool Bool
boolOr BoolTrue y = BoolTrue
boolOr BoolFalse y = y
xor : Bool Bool Bool
xor BoolTrue BoolTrue = BoolFalse
xor BoolTrue BoolFalse = BoolTrue
xor BoolFalse b = b

17
Boolean/Lemmas.agda Normal file
View File

@@ -0,0 +1,17 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Boolean.Definition
module Boolean.Lemmas where
notNot : (x : Bool) not (not x) x
notNot BoolTrue = refl
notNot BoolFalse = refl
notXor : (x y : Bool) not (xor x y) xor (not x) y
notXor BoolTrue BoolTrue = refl
notXor BoolTrue BoolFalse = refl
notXor BoolFalse BoolTrue = refl
notXor BoolFalse BoolFalse = refl

View File

@@ -58,7 +58,6 @@ open import Fields.Orders.Lemmas
open import Fields.FieldOfFractions.Field
open import Fields.FieldOfFractions.Lemmas
open import Fields.FieldOfFractions.Order
open import Fields.FieldOfFractions.Order
--open import Fields.FieldOfFractions.Archimedean
open import Rings.Definition

View File

@@ -18,24 +18,9 @@ fieldOfFractionsRing : Ring fieldOfFractionsSetoid fieldOfFractionsPlus fieldOfF
Ring.additiveGroup fieldOfFractionsRing = fieldOfFractionsGroup
Ring.*WellDefined fieldOfFractionsRing {a} {b} {c} {d} = fieldOfFractionsTimesWellDefined {a} {b} {c} {d}
Ring.1R fieldOfFractionsRing = record { num = Ring.1R R ; denom = Ring.1R R ; denomNonzero = IntegralDomain.nontrivial I }
Ring.groupIsAbelian fieldOfFractionsRing {record { num = a ; denom = b }} {record { num = c ; denom = d }} = need
where
open Setoid S
open Equivalence eq
need : (((a * d) + (b * c)) * (d * b)) ((b * d) * ((c * b) + (d * a)))
need = transitive (Ring.*Commutative R) (Ring.*WellDefined R (Ring.*Commutative R) (transitive (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Commutative R) (Ring.*Commutative R)) (Ring.groupIsAbelian R)))
Ring.*Associative fieldOfFractionsRing {record { num = a ; denom = b }} {record { num = c ; denom = d }} {record { num = e ; denom = f }} = need
where
open Setoid S
open Equivalence eq
need : ((a * (c * e)) * ((b * d) * f)) ((b * (d * f)) * ((a * c) * e))
need = transitive (Ring.*WellDefined R (Ring.*Associative R) (symmetric (Ring.*Associative R))) (Ring.*Commutative R)
Ring.*Commutative fieldOfFractionsRing {record { num = a ; denom = b }} {record { num = c ; denom = d }} = need
where
open Setoid S
open Equivalence eq
need : ((a * c) * (d * b)) ((b * d) * (c * a))
need = transitive (Ring.*Commutative R) (Ring.*WellDefined R (Ring.*Commutative R) (Ring.*Commutative R))
Ring.groupIsAbelian fieldOfFractionsRing {record { num = a ; denom = b }} {record { num = c ; denom = d }} = Equivalence.transitive (Setoid.eq S) (Ring.*Commutative R) (Ring.*WellDefined R (Ring.*Commutative R) (Equivalence.transitive (Setoid.eq S) (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Commutative R) (Ring.*Commutative R)) (Ring.groupIsAbelian R)))
Ring.*Associative fieldOfFractionsRing {record { num = a ; denom = b }} {record { num = c ; denom = d }} {record { num = e ; denom = f }} = Equivalence.transitive (Setoid.eq S) (Ring.*WellDefined R (Ring.*Associative R) (Ring.*Associative' R)) (Ring.*Commutative R)
Ring.*Commutative fieldOfFractionsRing {record { num = a ; denom = b }} {record { num = c ; denom = d }} = Equivalence.transitive (Setoid.eq S) (Ring.*Commutative R) (Ring.*WellDefined R (Ring.*Commutative R) (Ring.*Commutative R))
Ring.*DistributesOver+ fieldOfFractionsRing {record { num = a ; denom = b }} {record { num = c ; denom = d }} {record { num = e ; denom = f }} = need
where
open Setoid S

View File

@@ -12,17 +12,13 @@ open import Semirings.Definition
open import Functions.Definition
open import Groups.Isomorphisms.Definition
open import Boolean.Definition
open import Boolean.Lemmas
module Groups.FreeGroup.Parity {a : _} {A : Set a} (decA : DecidableSet A) where
open import Groups.FreeGroup.Word decA
open import Groups.FreeGroup.Group decA
xor : Bool Bool Bool
xor BoolTrue BoolTrue = BoolFalse
xor BoolTrue BoolFalse = BoolTrue
xor BoolFalse b = b
C2 : Group (reflSetoid Bool) xor
Group.+WellDefined C2 refl refl = refl
Group.0G C2 = BoolFalse
@@ -39,14 +35,6 @@ Group.invLeft C2 {BoolFalse} = refl
Group.invRight C2 {BoolTrue} = refl
Group.invRight C2 {BoolFalse} = refl
notNot : (x : Bool) not (not x) x
notNot BoolTrue = refl
notNot BoolFalse = refl
notWellDefined : {x y : Bool} (x y) not x not y
notWellDefined {BoolTrue} {BoolTrue} x=y = refl
notWellDefined {BoolFalse} {BoolFalse} x=y = refl
parity : (x : A) ReducedWord Bool
parity x empty = BoolFalse
parity x (prependLetter (ofLetter y) w _) with decA x y
@@ -56,6 +44,7 @@ parity x (prependLetter (ofInv y) w _) with decA x y
parity x (prependLetter (ofInv y) w _) | inl _ = not (parity x w)
parity x (prependLetter (ofInv y) w _) | inr _ = parity x w
private
parityPrepend : (a : A) (w : ReducedWord) (l : A) ((a l) False) parity a (prepend w (ofLetter l)) parity a w
parityPrepend a empty l notEq with decA a l
parityPrepend a empty l notEq | inl x = exFalso (notEq x)
@@ -144,19 +133,13 @@ parityPrepend''' a (prependLetter (ofInv l) w x) | inl _ with decA a l
... | inr a!=l = refl
parityPrepend''' a (prependLetter (ofInv l) w x) | inr bad = exFalso (bad refl)
notXor : (x y : Bool) not (xor x y) xor (not x) y
notXor BoolTrue BoolTrue = refl
notXor BoolTrue BoolFalse = refl
notXor BoolFalse BoolTrue = refl
notXor BoolFalse BoolFalse = refl
parityHomIsHom : (a : A) (x y : ReducedWord) parity a (_+W_ x y) xor (parity a x) (parity a y)
parityHomIsHom a empty y = refl
parityHomIsHom a (prependLetter (ofLetter l) x _) y with decA a l
parityHomIsHom a (prependLetter (ofLetter .a) x _) y | inl refl = transitivity (parityPrepend'' a (x +W y)) (transitivity (notWellDefined (parityHomIsHom a x y)) (notXor (parity a x) (parity a y)))
parityHomIsHom a (prependLetter (ofLetter .a) x _) y | inl refl = transitivity (parityPrepend'' a (x +W y)) (transitivity (applyEquality not (parityHomIsHom a x y)) (notXor (parity a x) (parity a y)))
parityHomIsHom a (prependLetter (ofLetter l) x _) y | inr a!=l = transitivity (parityPrepend a (_+W_ x y) l a!=l) (parityHomIsHom a x y)
parityHomIsHom a (prependLetter (ofInv l) x _) y with decA a l
parityHomIsHom a (prependLetter (ofInv .a) x _) y | inl refl = transitivity (parityPrepend''' a (x +W y)) (transitivity (notWellDefined (parityHomIsHom a x y)) (notXor (parity a x) (parity a y)))
parityHomIsHom a (prependLetter (ofInv .a) x _) y | inl refl = transitivity (parityPrepend''' a (x +W y)) (transitivity (applyEquality not (parityHomIsHom a x y)) (notXor (parity a x) (parity a y)))
parityHomIsHom a (prependLetter (ofInv l) x _) y | inr a!=l = transitivity (parityPrepend' a (x +W y) l a!=l) (parityHomIsHom a x y)
parityHom : (x : A) GroupHom (freeGroup) C2 (parity x)

View File

@@ -19,6 +19,7 @@ open import Groups.FreeProduct.Setoid decidableIndex decidableGroups G
open import Groups.FreeProduct.Addition decidableIndex decidableGroups G
open import Groups.FreeProduct.Group decidableIndex decidableGroups G
private
universalPropertyFunction' : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C C C} (H : Group T _+_) (fs : (i : I) (A i C)) (homs : (i : I) GroupHom (G i) H (fs i)) {i : I} ReducedSequenceBeginningWith i C
universalPropertyFunction' {_+_ = _+_} H fs homs {i} (ofEmpty .i g nonZero) = fs i g
universalPropertyFunction' {_+_ = _+_} H fs homs {i} (prependLetter .i g nonZero x x₁) = (fs i g) + universalPropertyFunction' H fs homs x
@@ -27,6 +28,7 @@ universalPropertyFunction : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ :
universalPropertyFunction H fs homs empty = Group.0G H
universalPropertyFunction H fs homs (nonempty i x) = universalPropertyFunction' H fs homs x
private
upWellDefined' : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C C C} (H : Group T _+_) (fs : (i : I) (A i C)) (homs : (i : I) GroupHom (G i) H (fs i)) {m n : I} (x : ReducedSequenceBeginningWith m) (y : ReducedSequenceBeginningWith n) (eq : =RP' x y) Setoid.__ T (universalPropertyFunction H fs homs (nonempty m x)) (universalPropertyFunction H fs homs (nonempty n y))
upWellDefined' H fs homs (ofEmpty m g nonZero) (ofEmpty n g₁ nonZero₁) eq with decidableIndex m n
... | inl refl = GroupHom.wellDefined (homs m) eq
@@ -37,6 +39,7 @@ upWellDefined : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C → C →
upWellDefined {T = T} H fs homs empty empty eq = Equivalence.reflexive (Setoid.eq T)
upWellDefined H fs homs (nonempty i w1) (nonempty j w2) eq = upWellDefined' H fs homs w1 w2 eq
private
upPrepend : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C C C} (H : Group T _+_) (fs : (i : I) (A i C)) (homs : (i : I) GroupHom (G i) H (fs i)) {j : I} (y : ReducedSequence) (g : A j) .(pr : _) Setoid.__ T (universalPropertyFunction H fs homs (prepend j g pr y)) ((fs j g) + universalPropertyFunction H fs homs y)
upPrepend {T = T} H fs homs empty g pr = Equivalence.symmetric (Setoid.eq T) (Group.identRight H)
upPrepend {T = T} H fs homs {j} (nonempty i (ofEmpty .i h nonZero)) g pr with decidableIndex j i
@@ -56,6 +59,7 @@ upPrepend {T = T} H fs homs {j} (nonempty k (prependLetter .k h nonZero y _)) g
open Setoid T
open Equivalence eq
private
upHom : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C C C} (H : Group T _+_) (fs : (i : I) (A i C)) (homs : (i : I) GroupHom (G i) H (fs i)) {i : I} (x : ReducedSequenceBeginningWith i) (y : ReducedSequence) Setoid.__ T (universalPropertyFunction H fs homs (plus' x y)) (universalPropertyFunction' H fs homs x + universalPropertyFunction H fs homs y)
upHom {T = T} H fs homs (ofEmpty _ g nonZero) empty = Equivalence.symmetric (Setoid.eq T) (Group.identRight H)
upHom {T = T} H fs homs (ofEmpty j g nonZero) (nonempty i (ofEmpty .i h nonZero1)) with decidableIndex j i
@@ -86,6 +90,7 @@ GroupHom.groupHom (universalPropertyHom H fs homs) {nonempty i x} {nonempty j y}
universalPropertyFunctionHasProperty : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C C C} (H : Group T _+_) (fs : (i : I) (A i C)) (homs : (i : I) GroupHom (G i) H (fs i)) {i : I} (g : A i) (nz : (Setoid.__ (S i) g (Group.0G (G i))) False) Setoid.__ T (fs i g) (universalPropertyFunction H fs homs (injection g nz))
universalPropertyFunctionHasProperty {T = T} H fs homs g nz = Equivalence.reflexive (Setoid.eq T)
private
universalPropertyFunctionUniquelyHasPropertyLemma : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C C C} (H : Group T _+_) (fs : (i : I) (A i C)) (homs : (i : I) GroupHom (G i) H (fs i)) (otherFunction : ReducedSequence C) (isHom : GroupHom FreeProductGroup H otherFunction) ({i : I} (g : A i) .(nz : (Setoid.__ (S i) g (Group.0G (G i))) False) Setoid.__ T (fs i g) (otherFunction (injection g nz))) {k l : I} (neq : (k l) False) (r : ReducedSequenceBeginningWith l) (g : A k) .(nz : (Setoid.__ (S k) g (Group.0G (G k)) False)) Setoid.__ T (otherFunction (nonempty k (prependLetter k g nz r neq))) (fs k g + universalPropertyFunction' H fs homs r)
universalPropertyFunctionUniquelyHasPropertyLemma {T = T} H fs homs otherFunction hom x {k} {l} neq (ofEmpty .l g2 nonZero) g nz = transitive (GroupHom.wellDefined hom {nonempty k (prependLetter k g nz (ofEmpty l g2 nonZero) neq)} {nonempty _ (ofEmpty k g nz) +RP nonempty _ (ofEmpty l g2 nonZero)} t) (transitive (GroupHom.groupHom hom {nonempty k (ofEmpty k g nz)} {nonempty _ (ofEmpty l g2 nonZero)}) (Group.+WellDefined H (symmetric (x g nz)) (symmetric (x g2 nonZero))))
where

View File

@@ -18,6 +18,7 @@ _*B_ : BinNat → BinNat → BinNat
(zero :: a) *B b = zero :: (a *B b)
(one :: a) *B b = (zero :: (a *B b)) +B b
private
contr : {a : _} {A : Set a} {l1 l2 : List A} {x : A} l1 [] l1 x :: l2 False
contr {l1 = []} p1 ()
contr {l1 = x :: l1} () p2

View File

@@ -16,6 +16,7 @@ module Numbers.BinaryNaturals.Order where
FirstLess : Compare
FirstGreater : Compare
private
badCompare : Equal FirstLess False
badCompare ()
@@ -31,6 +32,7 @@ module Numbers.BinaryNaturals.Order where
(a <BInherited b) | inl (inr x) = FirstGreater
(a <BInherited b) | inr x = Equal
private
go<B : Compare BinNat BinNat Compare
go<B Equal [] [] = Equal
go<B Equal [] (zero :: b) = go<B Equal [] b
@@ -61,6 +63,7 @@ module Numbers.BinaryNaturals.Order where
_<B_ : BinNat BinNat Compare
a <B b = go<B Equal a b
private
lemma1 : {s : Compare} (n : BinNat) go<B s n n s
lemma1 {Equal} [] = refl
lemma1 {Equal} (zero :: n) = lemma1 n
@@ -304,7 +307,7 @@ module Numbers.BinaryNaturals.Order where
chopDouble a b one | inr a=b | inl (inl a<b) rewrite a=b = exFalso (TotalOrder.irreflexive (TotalOrder) a<b)
chopDouble a b zero | inr a=b | inl (inr b<a) rewrite a=b = exFalso (TotalOrder.irreflexive (TotalOrder) b<a)
chopDouble a b one | inr a=b | inl (inr b<a) rewrite a=b = exFalso (TotalOrder.irreflexive (TotalOrder) b<a)
chopDouble a b i | inr a=b | inr x = refl
chopDouble a b _ | inr a=b | inr x = refl
succNotLess : {n : } succ n <N n False
succNotLess {succ n} (le x proof) = succNotLess {n} (le x (succInjective (transitivity (applyEquality succ (transitivity (Semiring.commutative Semiring (succ x) (succ n)) (transitivity (applyEquality succ (transitivity (Semiring.commutative Semiring n (succ x)) (applyEquality succ (Semiring.commutative Semiring x n)))) (Semiring.commutative Semiring (succ (succ n)) x)))) proof)))

View File

@@ -15,6 +15,7 @@ open import Maybe
module Numbers.BinaryNaturals.Subtraction where
private
aMinusAGo : (a : BinNat) mapMaybe canonical (go zero a a) yes []
aMinusAGo [] = refl
aMinusAGo (zero :: a) with aMinusAGo a
@@ -404,6 +405,7 @@ module Numbers.BinaryNaturals.Subtraction where
doublingLemma y | (a :: as) with pr | zero with pr2 rewrite binNatToNZero y pr2 = exFalso (nonEmptyNotEmpty (equalityCommutative pr))
doublingLemma y | (a :: as) with pr | succ bl with pr2 rewrite pr | pr2 | doubleIsBitShift' bl | equalityCommutative pr = applyEquality (zero ::_) (equalityCommutative (transitivity (equalityCommutative (binToBin y)) (applyEquality NToBinNat pr2)))
private
doubling : (a : ) {y : BinNat} (NToBinNat a zero :: y) binNatToN y +N (binNatToN y +N 0) a
doubling a {y} pr = NToBinNatInj (binNatToN y +N (binNatToN y +N zero)) a (transitivity (transitivity (equalityCommutative (NToBinNatIsCanonical (binNatToN y +N (binNatToN y +N zero)))) (doublingLemma y)) (applyEquality canonical (equalityCommutative pr)))

View File

@@ -33,3 +33,5 @@ record Ring {n m} {A : Set n} (S : Setoid {n} {m} A) (_+_ : A → A → A) (_*_
timesZero' {a} = transitive *Commutative timesZero
*DistributesOver+' : {a b c : A} (a + b) * c (a * c) + (b * c)
*DistributesOver+' = transitive *Commutative (transitive *DistributesOver+ (+WellDefined *Commutative *Commutative))
*Associative' : {a b c : A} ((a * b) * c) (a * (b * c))
*Associative' = symmetric *Associative