Files
agdaproofs/Groups/FreeProduct/UniversalProperty.agda
2020-04-19 07:54:37 +01:00

139 lines
15 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error #-}
open import Sets.EquivalenceRelations
open import Functions.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_; Setω)
open import Setoids.Setoids
open import Groups.Definition
open import LogicalFormulae
open import Orders.WellFounded.Definition
open import Numbers.Naturals.Semiring
open import Groups.Lemmas
open import Groups.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
module Groups.FreeProduct.UniversalProperty {i : _} {I : Set i} (decidableIndex : (x y : I) ((x y) || ((x y) False))) {a b : _} {A : I Set a} {S : (i : I) Setoid {a} {b} (A i)} {_+_ : (i : I) (A i) (A i) A i} (decidableGroups : (i : I) (x y : A i) ((Setoid.__ (S i) x y)) || ((Setoid.__ (S i) x y) False)) (G : (i : I) Group (S i) (_+_ i)) where
open import Groups.FreeProduct.Definition decidableIndex decidableGroups G
open import Groups.FreeProduct.Setoid decidableIndex decidableGroups G
open import Groups.FreeProduct.Addition decidableIndex decidableGroups G
open import Groups.FreeProduct.Group decidableIndex decidableGroups G
private
universalPropertyFunction' : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C C C} (H : Group T _+_) (fs : (i : I) (A i C)) (homs : (i : I) GroupHom (G i) H (fs i)) {i : I} ReducedSequenceBeginningWith i C
universalPropertyFunction' {_+_ = _+_} H fs homs {i} (ofEmpty .i g nonZero) = fs i g
universalPropertyFunction' {_+_ = _+_} H fs homs {i} (prependLetter .i g nonZero x x₁) = (fs i g) + universalPropertyFunction' H fs homs x
universalPropertyFunction : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C C C} (H : Group T _+_) (fs : (i : I) (A i C)) (homs : (i : I) GroupHom (G i) H (fs i)) ReducedSequence C
universalPropertyFunction H fs homs empty = Group.0G H
universalPropertyFunction H fs homs (nonempty i x) = universalPropertyFunction' H fs homs x
private
upWellDefined' : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C C C} (H : Group T _+_) (fs : (i : I) (A i C)) (homs : (i : I) GroupHom (G i) H (fs i)) {m n : I} (x : ReducedSequenceBeginningWith m) (y : ReducedSequenceBeginningWith n) (eq : =RP' x y) Setoid.__ T (universalPropertyFunction H fs homs (nonempty m x)) (universalPropertyFunction H fs homs (nonempty n y))
upWellDefined' H fs homs (ofEmpty m g nonZero) (ofEmpty n g₁ nonZero₁) eq with decidableIndex m n
... | inl refl = GroupHom.wellDefined (homs m) eq
upWellDefined' H fs homs (prependLetter m g nonZero x x₁) (prependLetter n g₁ nonZero₁ y x₂) eq with decidableIndex m n
... | inl refl = Group.+WellDefined H (GroupHom.wellDefined (homs m) (_&&_.fst eq)) (upWellDefined' H fs homs x y (_&&_.snd eq))
upWellDefined : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C C C} (H : Group T _+_) (fs : (i : I) (A i C)) (homs : (i : I) GroupHom (G i) H (fs i)) (x : ReducedSequence) (y : ReducedSequence) (eq : _=RP_ x y) Setoid.__ T (universalPropertyFunction H fs homs x) (universalPropertyFunction H fs homs y)
upWellDefined {T = T} H fs homs empty empty eq = Equivalence.reflexive (Setoid.eq T)
upWellDefined H fs homs (nonempty i w1) (nonempty j w2) eq = upWellDefined' H fs homs w1 w2 eq
private
upPrepend : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C C C} (H : Group T _+_) (fs : (i : I) (A i C)) (homs : (i : I) GroupHom (G i) H (fs i)) {j : I} (y : ReducedSequence) (g : A j) .(pr : _) Setoid.__ T (universalPropertyFunction H fs homs (prepend j g pr y)) ((fs j g) + universalPropertyFunction H fs homs y)
upPrepend {T = T} H fs homs empty g pr = Equivalence.symmetric (Setoid.eq T) (Group.identRight H)
upPrepend {T = T} H fs homs {j} (nonempty i (ofEmpty .i h nonZero)) g pr with decidableIndex j i
... | inr j!=i = Equivalence.reflexive (Setoid.eq T)
... | inl refl with decidableGroups j ((j + g) h) (Group.0G (G j))
... | inl x = Equivalence.transitive (Setoid.eq T) (Equivalence.symmetric (Setoid.eq T) (imageOfIdentityIsIdentity (homs j))) (Equivalence.transitive (Setoid.eq T) (Equivalence.symmetric (Setoid.eq T) (GroupHom.wellDefined (homs j) x)) (GroupHom.groupHom (homs j)))
... | inr x = GroupHom.groupHom (homs j)
upPrepend {T = T} H fs homs {j} (nonempty k (prependLetter .k h nonZero y _)) g pr with decidableIndex j k
... | inr j!=k = Equivalence.reflexive (Setoid.eq T)
... | inl refl with decidableGroups j ((j + g) h) (Group.0G (G j))
... | inl x = transitive (symmetric (Group.identLeft H)) (transitive (Group.+WellDefined H (transitive (symmetric (imageOfIdentityIsIdentity (homs k))) (transitive (GroupHom.wellDefined (homs k) (Equivalence.symmetric (Setoid.eq (S k)) x)) (GroupHom.groupHom (homs k)))) reflexive) (symmetric (Group.+Associative H)))
where
open Setoid T
open Equivalence eq
... | inr x = transitive (Group.+WellDefined H (GroupHom.groupHom (homs k)) reflexive) (symmetric (Group.+Associative H))
where
open Setoid T
open Equivalence eq
private
upHom : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C C C} (H : Group T _+_) (fs : (i : I) (A i C)) (homs : (i : I) GroupHom (G i) H (fs i)) {i : I} (x : ReducedSequenceBeginningWith i) (y : ReducedSequence) Setoid.__ T (universalPropertyFunction H fs homs (plus' x y)) (universalPropertyFunction' H fs homs x + universalPropertyFunction H fs homs y)
upHom {T = T} H fs homs (ofEmpty _ g nonZero) empty = Equivalence.symmetric (Setoid.eq T) (Group.identRight H)
upHom {T = T} H fs homs (ofEmpty j g nonZero) (nonempty i (ofEmpty .i h nonZero1)) with decidableIndex j i
... | inr j!=i = Equivalence.reflexive (Setoid.eq T)
... | inl refl with decidableGroups j ((j + g) h) (Group.0G (G j))
... | inl x = Equivalence.transitive (Setoid.eq T) (Equivalence.symmetric (Setoid.eq T) (imageOfIdentityIsIdentity (homs j))) (Equivalence.transitive (Setoid.eq T) (Equivalence.symmetric (Setoid.eq T) (GroupHom.wellDefined (homs j) x)) (GroupHom.groupHom (homs j)))
... | inr x = GroupHom.groupHom (homs j)
upHom {T = T} H fs homs (ofEmpty j g nonZero) (nonempty i (prependLetter .i h nonZero1 x x₁)) with decidableIndex j i
... | inr j!=i = Equivalence.reflexive (Setoid.eq T)
... | inl refl with decidableGroups j ((j + g) h) (Group.0G (G j))
... | inr _ = Equivalence.transitive (Setoid.eq T) (Group.+WellDefined H (GroupHom.groupHom (homs j)) (Equivalence.reflexive (Setoid.eq T))) (Equivalence.symmetric (Setoid.eq T) (Group.+Associative H))
... | inl eq1 = Equivalence.transitive (Setoid.eq T) (Equivalence.symmetric (Setoid.eq T) (Group.identLeft H)) (Equivalence.transitive (Setoid.eq T) (Group.+WellDefined H (Equivalence.transitive (Setoid.eq T) (Equivalence.symmetric (Setoid.eq T) (imageOfIdentityIsIdentity (homs j))) (Equivalence.transitive (Setoid.eq T) (GroupHom.wellDefined (homs j) (Equivalence.symmetric (Setoid.eq (S j)) eq1)) (GroupHom.groupHom (homs j)))) (Equivalence.reflexive (Setoid.eq T))) (Equivalence.symmetric (Setoid.eq T) (Group.+Associative H)))
upHom {T = T} H fs homs (prependLetter j g nonZero {k} w k!=j) empty = Equivalence.transitive (Setoid.eq T) (Equivalence.transitive (Setoid.eq T) (upWellDefined H fs homs (plus' (prependLetter j g _ w k!=j) empty) (prepend j g _ (nonempty k w)) (prependWD' g nonZero (plus' w empty) (nonempty k w) (plusEmptyRight w))) (upPrepend H fs homs (nonempty k w) g nonZero)) (Equivalence.symmetric (Setoid.eq T) (Group.identRight H))
upHom {T = T} H fs homs (prependLetter j g nonZero {k} m k!=j) (nonempty i x2) = transitive (upPrepend H fs homs (plus' m (nonempty i x2)) g nonZero) (transitive (Group.+WellDefined H reflexive (upHom H fs homs m (nonempty i x2))) (Group.+Associative H))
where
open Setoid T
open Equivalence eq
universalPropertyHom : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C C C} (H : Group T _+_) (fs : (i : I) (A i C)) (homs : (i : I) GroupHom (G i) H (fs i)) GroupHom FreeProductGroup H (universalPropertyFunction H fs homs)
GroupHom.wellDefined (universalPropertyHom {T = T} H fs homs) {x} {y} eq = upWellDefined H fs homs x y eq
GroupHom.groupHom (universalPropertyHom {T = T} H fs homs) {empty} {y} = Equivalence.symmetric (Setoid.eq T) (Group.identLeft H)
GroupHom.groupHom (universalPropertyHom {T = T} H fs homs) {nonempty i x} {empty} = transitive (upWellDefined H fs homs (nonempty i x +RP empty) (nonempty i x) (plusEmptyRight x)) (symmetric (Group.identRight H))
where
open Setoid T
open Equivalence eq
GroupHom.groupHom (universalPropertyHom H fs homs) {nonempty i x} {nonempty j y} = upHom H fs homs x (nonempty j y)
universalPropertyFunctionHasProperty : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C C C} (H : Group T _+_) (fs : (i : I) (A i C)) (homs : (i : I) GroupHom (G i) H (fs i)) {i : I} (g : A i) (nz : (Setoid.__ (S i) g (Group.0G (G i))) False) Setoid.__ T (fs i g) (universalPropertyFunction H fs homs (injection g nz))
universalPropertyFunctionHasProperty {T = T} H fs homs g nz = Equivalence.reflexive (Setoid.eq T)
private
universalPropertyFunctionUniquelyHasPropertyLemma : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C C C} (H : Group T _+_) (fs : (i : I) (A i C)) (homs : (i : I) GroupHom (G i) H (fs i)) (otherFunction : ReducedSequence C) (isHom : GroupHom FreeProductGroup H otherFunction) ({i : I} (g : A i) .(nz : (Setoid.__ (S i) g (Group.0G (G i))) False) Setoid.__ T (fs i g) (otherFunction (injection g nz))) {k l : I} (neq : (k l) False) (r : ReducedSequenceBeginningWith l) (g : A k) .(nz : (Setoid.__ (S k) g (Group.0G (G k)) False)) Setoid.__ T (otherFunction (nonempty k (prependLetter k g nz r neq))) (fs k g + universalPropertyFunction' H fs homs r)
universalPropertyFunctionUniquelyHasPropertyLemma {T = T} H fs homs otherFunction hom x {k} {l} neq (ofEmpty .l g2 nonZero) g nz = transitive (GroupHom.wellDefined hom {nonempty k (prependLetter k g nz (ofEmpty l g2 nonZero) neq)} {nonempty _ (ofEmpty k g nz) +RP nonempty _ (ofEmpty l g2 nonZero)} t) (transitive (GroupHom.groupHom hom {nonempty k (ofEmpty k g nz)} {nonempty _ (ofEmpty l g2 nonZero)}) (Group.+WellDefined H (symmetric (x g nz)) (symmetric (x g2 nonZero))))
where
open Setoid T
open Equivalence eq
t : Setoid.__ freeProductSetoid (nonempty k (prependLetter k g nz (ofEmpty l g2 nonZero) neq)) (prepend k g nz (nonempty l (ofEmpty l g2 nonZero)))
t with decidableIndex k l
... | inl p = exFalso (neq p)
... | inr _ with decidableIndex k k
... | inr bad = exFalso (bad refl)
... | inl refl = Equivalence.reflexive (Setoid.eq (S k)) ,, =RP'reflex (ofEmpty l g2 _)
universalPropertyFunctionUniquelyHasPropertyLemma {T = T} H fs homs otherFunction hom x {k} {l} neq (prependLetter .l h nonZero r pr) g nz = transitive (GroupHom.wellDefined hom {nonempty _ (prependLetter k g nz (prependLetter l h nonZero r pr) neq)} {(nonempty k (ofEmpty k g nz)) +RP (nonempty l (prependLetter l h nonZero r pr))} t) (transitive (GroupHom.groupHom hom {nonempty k (ofEmpty k g nz)} {nonempty l (prependLetter l h nonZero r pr)}) (Group.+WellDefined H (symmetric (x g nz)) (universalPropertyFunctionUniquelyHasPropertyLemma H fs homs otherFunction hom x pr r h nonZero)))
where
open Setoid T
open Equivalence eq
t : Setoid.__ freeProductSetoid (nonempty k (prependLetter k g nz (prependLetter l h nonZero r pr) neq)) (prepend k g nz (nonempty l (prependLetter l h nonZero r pr)))
t with decidableIndex k l
... | inl bad = exFalso (neq bad)
... | inr k!=l with decidableIndex k k
... | inr bad = exFalso (bad refl)
... | inl refl with decidableIndex l l
... | inr bad = exFalso (bad refl)
... | inl refl = Equivalence.reflexive (Setoid.eq (S k)) ,, ((Equivalence.reflexive (Setoid.eq (S l))) ,, =RP'reflex r)
universalPropertyFunctionUniquelyHasProperty : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C C C} (H : Group T _+_) (fs : (i : I) (A i C)) (homs : (i : I) GroupHom (G i) H (fs i)) (otherFunction : ReducedSequence C) (isHom : GroupHom FreeProductGroup H otherFunction) ({i : I} (g : A i) .(nz : (Setoid.__ (S i) g (Group.0G (G i))) False) Setoid.__ T (fs i g) (otherFunction (injection g nz))) (r : ReducedSequence) Setoid.__ T (otherFunction r) (universalPropertyFunction H fs homs r)
universalPropertyFunctionUniquelyHasProperty H fs homs otherFunction hom prop empty = imageOfIdentityIsIdentity hom
universalPropertyFunctionUniquelyHasProperty {T = T} H fs homs otherFunction hom prop (nonempty i (ofEmpty .i g nonZero)) = Equivalence.symmetric (Setoid.eq T) (prop g nonZero)
universalPropertyFunctionUniquelyHasProperty {T = T} H fs homs otherFunction hom prop (nonempty i (prependLetter .i g nonZero {k} (ofEmpty .k g1 nonZero1) x1)) = transitive (GroupHom.wellDefined hom {_} {(nonempty i (ofEmpty i g nonZero)) +RP (nonempty k (ofEmpty k g1 nonZero1))} t) (transitive (GroupHom.groupHom hom {nonempty i (ofEmpty i g nonZero)}) (Group.+WellDefined H (symmetric (prop g nonZero)) (symmetric (prop g1 nonZero1))))
where
open Setoid T
open Equivalence eq
t : Setoid.__ freeProductSetoid (nonempty i (prependLetter i g nonZero (ofEmpty k g1 nonZero1) x1)) (prepend i g nonZero (nonempty k (ofEmpty k g1 nonZero1)))
t with decidableIndex i k
... | inl p = exFalso (x1 p)
... | inr _ with decidableIndex i i
... | inr bad = exFalso (bad refl)
... | inl refl = Equivalence.reflexive (Setoid.eq (S i)) ,, =RP'reflex (ofEmpty k g1 nonZero1)
universalPropertyFunctionUniquelyHasProperty {T = T} H fs homs otherFunction hom prop (nonempty i (prependLetter .i g nonZero {k} (prependLetter .k g2 nonZero2 x x2) x1)) = transitive (GroupHom.wellDefined hom {nonempty i (prependLetter i g nonZero (prependLetter k g2 nonZero2 x x2) x1)} {(nonempty i (ofEmpty i g nonZero)) +RP (nonempty k (prependLetter k g2 nonZero2 x x2))} t) (transitive (GroupHom.groupHom hom {nonempty i (ofEmpty i g nonZero)} {nonempty k (prependLetter k g2 nonZero2 x x2)}) (Group.+WellDefined H (symmetric (prop g nonZero)) (universalPropertyFunctionUniquelyHasPropertyLemma H fs homs otherFunction hom prop x2 x g2 nonZero2)))
where
open Setoid T
open Equivalence eq
t : Setoid.__ freeProductSetoid (nonempty i (prependLetter i g nonZero (prependLetter k g2 nonZero2 x x2) x1)) (prepend i g nonZero (nonempty k (prependLetter k g2 nonZero2 x x2)))
t with decidableIndex i k
... | inl x = exFalso (x1 x)
... | inr _ = =RP'reflex (prependLetter i g nonZero (prependLetter k g2 nonZero2 x x2) x1)