Fix up the structure of Actions and SymmetricGroups (#67)

This commit is contained in:
Patrick Stevens
2019-11-08 13:50:24 +00:00
committed by GitHub
parent cac9d034c2
commit d30d14772e
11 changed files with 363 additions and 288 deletions

View File

@@ -0,0 +1,26 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Sets.FinSet
open import Groups.Definition
open import Groups.Lemmas
open import Groups.Groups
open import Groups.Groups2
open import Sets.EquivalenceRelations
module Groups.Actions.Definition where
record GroupAction {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·_ : A A A} {B : Set n} (G : Group S _·_) (X : Setoid {n} {p} B) : Set (m n o p) where
open Group G
open Setoid S renaming (__ to _G_)
open Setoid X renaming (__ to _X_)
field
action : A B B
actionWellDefined1 : {g h : A} {x : B} (g G h) action g x X action h x
actionWellDefined2 : {g : A} {x y : B} (x X y) action g x X action g y
identityAction : {x : B} action 0G x X x
associativeAction : {x : B} {g h : A} action (g · h) x X action g (action h x)

25
Groups/Actions/Orbit.agda Normal file
View File

@@ -0,0 +1,25 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Sets.FinSet
open import Groups.Definition
open import Groups.Lemmas
open import Groups.Groups
open import Groups.Actions.Definition
open import Groups.Groups2
open import Sets.EquivalenceRelations
module Groups.Actions.Orbit where
data Orbit {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) : Set (a b c d) where
orbitElt : (g : A) Orbit action x
orbitSetoid : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Setoid (Orbit action x)
Setoid.__ (orbitSetoid {T = T} action x) (orbitElt a) (orbitElt b) = Setoid.__ T (GroupAction.action action a x) (GroupAction.action action b x)
Equivalence.reflexive (Setoid.eq (orbitSetoid {T = T} action x)) {orbitElt g} = Equivalence.reflexive (Setoid.eq T)
Equivalence.symmetric (Setoid.eq (orbitSetoid {T = T} action x)) {orbitElt g} {orbitElt h} = Equivalence.symmetric (Setoid.eq T)
Equivalence.transitive (Setoid.eq (orbitSetoid {T = T} action x)) {orbitElt g} {orbitElt h} {orbitElt i} = Equivalence.transitive (Setoid.eq T)

View File

@@ -0,0 +1,116 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Sets.FinSet
open import Groups.Definition
open import Groups.Lemmas
open import Groups.Groups
open import Groups.Actions.Definition
open import Groups.Actions.Stabiliser
open import Groups.Groups2
open import Sets.EquivalenceRelations
module Groups.Actions.OrbitStabiliser where
orbitStabiliserEquivRel1 : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Rel A
orbitStabiliserEquivRel1 {T = T} action x g1 g2 = Setoid.__ T (GroupAction.action action g1 x) (GroupAction.action action g2 x)
orbitStabiliserEquivRel2 : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Rel A
orbitStabiliserEquivRel2 {T = T} {_+_ = _+_} {G = G} action x g1 g2 = Setoid.__ T (GroupAction.action action ((Group.inverse G g2) + g1) x) x
osEquivRel1Equiv : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Equivalence (orbitStabiliserEquivRel1 action x)
Equivalence.reflexive (osEquivRel1Equiv {T = T} action x) {a} = Equivalence.reflexive (Setoid.eq T)
Equivalence.symmetric (osEquivRel1Equiv {T = T} action x) {a} {b} = Equivalence.symmetric (Setoid.eq T)
Equivalence.transitive (osEquivRel1Equiv {T = T} action x) {a} {b} {c} = Equivalence.transitive (Setoid.eq T)
osEquivRel2Equiv : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Equivalence (orbitStabiliserEquivRel2 action x)
Equivalence.reflexive (osEquivRel2Equiv {T = T} {G = G} action x) = transitive (GroupAction.actionWellDefined1 action (Group.invLeft G)) (GroupAction.identityAction action)
where
open Equivalence (Setoid.eq T)
Equivalence.symmetric (osEquivRel2Equiv {S = S} {T = T} {_+_ = _+_} {G = G} gAction x) {b} {c} b=c = need
where
open Equivalence (Setoid.eq T)
open Equivalence (Setoid.eq S) renaming (symmetric to symmetricS ; transitive to transitiveS ; reflexive to reflexiveS)
open Setoid T
open GroupAction gAction
open Group G
have : action ((inverse c) + b) x x
have = b=c
p : action (inverse (inverse b + c)) x x
p = transitive (actionWellDefined1 (transitiveS (invContravariant G) (Group.+WellDefined G reflexiveS (invInv G)))) have
q : action ((inverse b) + c) (action (inverse (inverse b + c)) x) action ((inverse b) + c) x
q = actionWellDefined2 p
r : action (((inverse b) + c) + (inverse (inverse b + c))) x action ((inverse b) + c) x
r = transitive associativeAction q
s : action identity x action ((inverse b) + c) x
s = transitive (actionWellDefined1 (symmetricS invRight)) r
need : action ((inverse b) + c) x x
need = symmetric (transitive (symmetric identityAction) s)
Equivalence.transitive (osEquivRel2Equiv {S = S} {T = T} {_+_ = _+_} {G = G} gAction x) {a} {b} {c} a=b b=c = need
where
open Equivalence (Setoid.eq T)
open Equivalence (Setoid.eq S) renaming (symmetric to symmetricS ; reflexive to reflexiveS ; transitive to transitiveS)
open Setoid T
open GroupAction gAction
open Group G
have1 : action ((inverse c) + b) x x
have1 = b=c
have2 : action ((inverse b) + a) x x
have2 = a=b
p : action ((inverse c) + b) (action (inverse b + a) x) x
p = transitive (actionWellDefined2 have2) have1
q : action ((inverse c + b) + (inverse b + a)) x x
q = transitive associativeAction p
need : action ((inverse c) + a) x x
need = transitive (actionWellDefined1 (transitiveS (+WellDefined reflexiveS (transitiveS (symmetricS identLeft) (+WellDefined (symmetricS invRight) reflexiveS))) (fourWayAssoc G))) q
osEquivRelsEqual' : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) {g h : A} (orbitStabiliserEquivRel2 action x) g h (orbitStabiliserEquivRel1 action x) g h
osEquivRelsEqual' {S = S} {T = T} {_+_ = _+_} {G = G} action x {g} {h} g=h = need
where
open Setoid T
open Group G
open Equivalence eq
open Equivalence (Setoid.eq S) renaming (symmetric to symmetricS ; transitive to transitiveS)
have : (GroupAction.action action ((inverse h) + g) x) x
have = g=h
p : (GroupAction.action action (inverse h) (GroupAction.action action g x)) x
p = transitive (symmetric (GroupAction.associativeAction action)) have
q : (GroupAction.action action h (GroupAction.action action (inverse h) (GroupAction.action action g x))) GroupAction.action action h x
q = GroupAction.actionWellDefined2 action p
r : (GroupAction.action action (h + inverse h) (GroupAction.action action g x)) GroupAction.action action h x
r = transitive (GroupAction.associativeAction action) q
s : (GroupAction.action action identity (GroupAction.action action g x)) GroupAction.action action h x
s = transitive (GroupAction.actionWellDefined1 action (symmetricS (Group.invRight G))) r
need : (GroupAction.action action g x) (GroupAction.action action h x)
need = transitive (symmetric (GroupAction.identityAction action)) s
osEquivRelsEqual : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) {g h : A} (orbitStabiliserEquivRel1 action x) g h (orbitStabiliserEquivRel2 action x) g h
osEquivRelsEqual {T = T} {_+_ = _+_} {G = G} action x {g} {h} g=h = need
where
open Setoid T
open Group G
open Equivalence eq
have : (GroupAction.action action g x) (GroupAction.action action h x)
have = g=h
p : GroupAction.action action (inverse h) (GroupAction.action action g x) GroupAction.action action (inverse h) (GroupAction.action action h x)
p = GroupAction.actionWellDefined2 action have
need : (GroupAction.action action ((inverse h) + g) x) x
need = transitive (GroupAction.associativeAction action) (transitive p (transitive (symmetric (GroupAction.associativeAction action)) (transitive (GroupAction.actionWellDefined1 action (Group.invLeft G)) (GroupAction.identityAction action))))
orbitStabiliserBijection : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) A ((Stabiliser action x) && Orbit action x)
orbitStabiliserBijection action x g = stab {!GroupAction.action action ? ?!} {!!} ,, orbitElt g
where
osBijWellDefined : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) {r s : A} (Setoid.__ S r s) Setoid.__ (directSumSetoid (stabiliserSetoid action x) (orbitSetoid action x)) (orbitStabiliserBijection action x r) (orbitStabiliserBijection action x s)
_&&_.fst (osBijWellDefined action x r~s) = {!!}
_&&_.snd (osBijWellDefined action x r~s) = GroupAction.actionWellDefined1 action r~s
orbitStabiliserTheorem : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) SetoidBijection S (directSumSetoid (stabiliserSetoid action x) (orbitSetoid action x)) (orbitStabiliserBijection action x)
SetoidInjection.+WellDefined (SetoidBijection.inj (orbitStabiliserTheorem {S = S} action x)) = osBijWellDefined action x
SetoidInjection.injective (SetoidBijection.inj (orbitStabiliserTheorem {S = S} action x)) {g} {h} (fst ,, gx=hx) = {!!}
SetoidSurjection.+WellDefined (SetoidBijection.surj (orbitStabiliserTheorem action x)) = osBijWellDefined action x
SetoidSurjection.surjective (SetoidBijection.surj (orbitStabiliserTheorem action x)) {stab g gx=x ,, orbitElt h} = h , ({!!} ,, {!!})

View File

@@ -0,0 +1,62 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Sets.FinSet
open import Groups.Definition
open import Groups.Lemmas
open import Groups.Groups
open import Groups.Subgroups.Definition
open import Groups.Homomorphisms.Definition
open import Groups.Actions.Definition
open import Groups.Groups2
open import Sets.EquivalenceRelations
open import Groups.Actions.Definition
module Groups.Actions.Stabiliser where
data Stabiliser {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) : Set (a b c d) where
stab : (g : A) Setoid.__ T (GroupAction.action action g x) x Stabiliser action x
stabiliserSetoid : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Setoid (Stabiliser action x)
Setoid.__ (stabiliserSetoid {S = S} action x) (stab g gx=x) (stab h hx=x) = Setoid.__ S g h
Equivalence.reflexive (Setoid.eq (stabiliserSetoid {S = S} action x)) {stab g _} = Equivalence.reflexive (Setoid.eq S)
Equivalence.symmetric (Setoid.eq (stabiliserSetoid {S = S} action x)) {stab g _} {stab h _} = Equivalence.symmetric (Setoid.eq S)
Equivalence.transitive (Setoid.eq (stabiliserSetoid {S = S} action x)) {stab g _} {stab h _} {stab i _} = Equivalence.transitive (Setoid.eq S)
stabiliserGroupOp : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} Stabiliser action x Stabiliser action x Stabiliser action x
stabiliserGroupOp {T = T} {_+_ = _+_} action (stab p px=x) (stab q qx=x) = stab (p + q) (transitive (GroupAction.associativeAction action) (transitive (GroupAction.actionWellDefined2 action qx=x) px=x))
where
open Setoid T
open Equivalence eq
stabiliserGroup : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} Group (stabiliserSetoid action x) (stabiliserGroupOp action)
Group.+WellDefined (stabiliserGroup {T = T} {G = G} action {x}) {stab m mx=x} {stab n nx=x} {stab r rx=x} {stab s sx=x} m=r n=s = Group.+WellDefined G m=r n=s
where
open Setoid T
open Equivalence eq
Group.0G (stabiliserGroup {G = G} action) = stab (Group.0G G) (GroupAction.identityAction action)
Group.inverse (stabiliserGroup {T = T} {_+_ = _+_} {G = G} action {x}) (stab g gx=x) = stab (Group.inverse G g) (transitive {_} {GroupAction.action action ((inverse g) + g) x} (symmetric (transitive (GroupAction.associativeAction action) (GroupAction.actionWellDefined2 action gx=x))) (transitive (GroupAction.actionWellDefined1 action invLeft) (GroupAction.identityAction action)))
where
open Group G
open Setoid T
open Equivalence eq
Group.+Associative (stabiliserGroup {G = G} action) {stab m mx=x} {stab n nx=x} {stab o ox=x} = Group.+Associative G
Group.identRight (stabiliserGroup {G = G} action) {stab m mx=x} = Group.identRight G
Group.identLeft (stabiliserGroup {G = G} action) {stab m mx=x }= Group.identLeft G
Group.invLeft (stabiliserGroup {G = G} action) {stab m mx=x} = Group.invLeft G
Group.invRight (stabiliserGroup {G = G} action) {stab m mx=x} = Group.invRight G
stabiliserInjection : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} Stabiliser action x A
stabiliserInjection action (stab g gx=x) = g
stabiliserInjectionIsHom : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} GroupHom (stabiliserGroup action {x}) G (stabiliserInjection action {x})
GroupHom.groupHom (stabiliserInjectionIsHom {S = S} action) {stab g gx=x} {stab h hx=x} = Equivalence.reflexive (Setoid.eq S)
GroupHom.wellDefined (stabiliserInjectionIsHom action) {stab g gx=x} {stab h hx=x} g=h = g=h
stabiliserIsSubgroup : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} Subgroup G (stabiliserGroup action) (stabiliserInjectionIsHom action {x})
SetoidInjection.wellDefined (Subgroup.fInj (stabiliserIsSubgroup action)) {stab g gx=x} {stab h hx=x} g=h = g=h
SetoidInjection.injective (Subgroup.fInj (stabiliserIsSubgroup action)) {stab g gx=x} {stab h hx=x} g=h = g=h