Files
agdaproofs/Groups/Actions/Stabiliser.agda
2019-11-08 13:50:24 +00:00

63 lines
4.7 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Sets.FinSet
open import Groups.Definition
open import Groups.Lemmas
open import Groups.Groups
open import Groups.Subgroups.Definition
open import Groups.Homomorphisms.Definition
open import Groups.Actions.Definition
open import Groups.Groups2
open import Sets.EquivalenceRelations
open import Groups.Actions.Definition
module Groups.Actions.Stabiliser where
data Stabiliser {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) : Set (a b c d) where
stab : (g : A) Setoid.__ T (GroupAction.action action g x) x Stabiliser action x
stabiliserSetoid : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Setoid (Stabiliser action x)
Setoid.__ (stabiliserSetoid {S = S} action x) (stab g gx=x) (stab h hx=x) = Setoid.__ S g h
Equivalence.reflexive (Setoid.eq (stabiliserSetoid {S = S} action x)) {stab g _} = Equivalence.reflexive (Setoid.eq S)
Equivalence.symmetric (Setoid.eq (stabiliserSetoid {S = S} action x)) {stab g _} {stab h _} = Equivalence.symmetric (Setoid.eq S)
Equivalence.transitive (Setoid.eq (stabiliserSetoid {S = S} action x)) {stab g _} {stab h _} {stab i _} = Equivalence.transitive (Setoid.eq S)
stabiliserGroupOp : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} Stabiliser action x Stabiliser action x Stabiliser action x
stabiliserGroupOp {T = T} {_+_ = _+_} action (stab p px=x) (stab q qx=x) = stab (p + q) (transitive (GroupAction.associativeAction action) (transitive (GroupAction.actionWellDefined2 action qx=x) px=x))
where
open Setoid T
open Equivalence eq
stabiliserGroup : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} Group (stabiliserSetoid action x) (stabiliserGroupOp action)
Group.+WellDefined (stabiliserGroup {T = T} {G = G} action {x}) {stab m mx=x} {stab n nx=x} {stab r rx=x} {stab s sx=x} m=r n=s = Group.+WellDefined G m=r n=s
where
open Setoid T
open Equivalence eq
Group.0G (stabiliserGroup {G = G} action) = stab (Group.0G G) (GroupAction.identityAction action)
Group.inverse (stabiliserGroup {T = T} {_+_ = _+_} {G = G} action {x}) (stab g gx=x) = stab (Group.inverse G g) (transitive {_} {GroupAction.action action ((inverse g) + g) x} (symmetric (transitive (GroupAction.associativeAction action) (GroupAction.actionWellDefined2 action gx=x))) (transitive (GroupAction.actionWellDefined1 action invLeft) (GroupAction.identityAction action)))
where
open Group G
open Setoid T
open Equivalence eq
Group.+Associative (stabiliserGroup {G = G} action) {stab m mx=x} {stab n nx=x} {stab o ox=x} = Group.+Associative G
Group.identRight (stabiliserGroup {G = G} action) {stab m mx=x} = Group.identRight G
Group.identLeft (stabiliserGroup {G = G} action) {stab m mx=x }= Group.identLeft G
Group.invLeft (stabiliserGroup {G = G} action) {stab m mx=x} = Group.invLeft G
Group.invRight (stabiliserGroup {G = G} action) {stab m mx=x} = Group.invRight G
stabiliserInjection : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} Stabiliser action x A
stabiliserInjection action (stab g gx=x) = g
stabiliserInjectionIsHom : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} GroupHom (stabiliserGroup action {x}) G (stabiliserInjection action {x})
GroupHom.groupHom (stabiliserInjectionIsHom {S = S} action) {stab g gx=x} {stab h hx=x} = Equivalence.reflexive (Setoid.eq S)
GroupHom.wellDefined (stabiliserInjectionIsHom action) {stab g gx=x} {stab h hx=x} g=h = g=h
stabiliserIsSubgroup : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} Subgroup G (stabiliserGroup action) (stabiliserInjectionIsHom action {x})
SetoidInjection.wellDefined (Subgroup.fInj (stabiliserIsSubgroup action)) {stab g gx=x} {stab h hx=x} g=h = g=h
SetoidInjection.injective (Subgroup.fInj (stabiliserIsSubgroup action)) {stab g gx=x} {stab h hx=x} g=h = g=h