Some stuff on L&S (#22)

This commit is contained in:
Patrick Stevens
2019-02-09 17:06:30 +00:00
committed by GitHub
parent ecde6acce4
commit c35fa90951
3 changed files with 286 additions and 0 deletions

View File

@@ -0,0 +1,16 @@
{-# OPTIONS --safe --warning=error #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Logic.PropositionalLogic
module ExampleSheets.LogicAndSets.Sheet1 where
q1i : {a : _} {A : Set a} (p1 p2 p3 : Propositions A) Tautology (implies (implies p1 (implies p2 p3)) (implies p2 (implies p1 p3)))
Tautology.isTaut (q1i p1 p2 p3) {v} with inspect (Valuation.v v p3)
Tautology.isTaut (q1i p1 p2 p3) {v} | BoolTrue with p3T = Valuation.vImplicationT v (Valuation.vImplicationT v (Valuation.vImplicationT v p3T))
Tautology.isTaut (q1i p1 p2 p3) {v} | BoolFalse with p3F with inspect (Valuation.v v p2)
Tautology.isTaut (q1i p1 p2 p3) {v} | BoolFalse with p3F | BoolTrue with p2T with inspect (Valuation.v v p1)
Tautology.isTaut (q1i p1 p2 p3) {v} | BoolFalse with p3F | BoolTrue with p2T | BoolTrue with p1T = Valuation.vImplicationVacuous v (Valuation.vImplicationF v p1T (Valuation.vImplicationF v p2T p3F))
Tautology.isTaut (q1i p1 p2 p3) {v} | BoolFalse with p3F | BoolTrue with p2T | BoolFalse with p1F = Valuation.vImplicationT v (Valuation.vImplicationT v (Valuation.vImplicationVacuous v p1F))
Tautology.isTaut (q1i p1 p2 p3) {v} | BoolFalse with p3F | BoolFalse with p2F = Valuation.vImplicationT v (Valuation.vImplicationVacuous v p2F)

View File

@@ -0,0 +1,171 @@
{-# OPTIONS --safe --warning=error #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Functions
open import Numbers.Naturals
open import Vectors
module Logic.PropositionalLogic where
data Propositions {a : _} (primitives : Set a) : Set a where
ofPrimitive : primitives Propositions primitives
false : Propositions primitives
implies : (a b : Propositions primitives) Propositions primitives
prNot : {a : _} {pr : Set a} Propositions pr Propositions pr
prNot p = implies p false
impliesIsBigger : {a : _} {pr : Set a} {P Q : Propositions pr} Q implies P Q False
impliesIsBigger {P = P} {Q} ()
impliesInjectiveL : {a : _} {A : Set a} {p q r : Propositions A} implies p q implies r q p r
impliesInjectiveL refl = refl
impliesInjectiveR : {a : _} {A : Set a} {p q r : Propositions A} implies p q implies p r q r
impliesInjectiveR refl = refl
impliesInjective : {a : _} {A : Set a} {p q r s : Propositions A} implies p q implies r s (p r) && (q s)
impliesInjective refl = refl ,, refl
record Valuation {a : _} (primitives : Set a) : Set a where
field
v : Propositions primitives Bool
vFalse : v false BoolFalse
vImplicationF : {p q : Propositions primitives} v p BoolTrue v q BoolFalse v (implies p q) BoolFalse
vImplicationVacuous : {p q : Propositions primitives} v p BoolFalse v (implies p q) BoolTrue
vImplicationT : {p q : Propositions primitives} v q BoolTrue v (implies p q) BoolTrue
-- Proposition 1a
valuationIsDetermined : {a : _} {pr : Set a} (v1 v2 : Valuation pr) ({x : pr} Valuation.v v1 (ofPrimitive x) Valuation.v v2 (ofPrimitive x)) {x : Propositions pr} Valuation.v v1 x Valuation.v v2 x
valuationIsDetermined v1 v2 pr {ofPrimitive x} = pr
valuationIsDetermined v1 v2 pr {false} rewrite Valuation.vFalse v1 | Valuation.vFalse v2 = refl
valuationIsDetermined v1 v2 pr {implies x y} with valuationIsDetermined v1 v2 pr {x}
valuationIsDetermined v1 v2 pr {implies x y} | eqX with valuationIsDetermined v1 v2 pr {y}
... | eqY with inspect (Valuation.v v1 x)
valuationIsDetermined v1 v2 pr {implies x y} | eqX | eqY | BoolTrue with p with inspect (Valuation.v v1 y)
valuationIsDetermined v1 v2 pr {implies x y} | eqX | eqY | BoolTrue with p | BoolTrue with q rewrite p | q | Valuation.vImplicationT v2 {p = x} {q = y} (equalityCommutative eqY) | Valuation.vImplicationT v1 {p = x} {q = y} q = refl
valuationIsDetermined v1 v2 pr {implies x y} | eqX | eqY | BoolTrue with p | BoolFalse with q rewrite p | q | Valuation.vImplicationF v1 p q | Valuation.vImplicationF v2 (equalityCommutative eqX) (equalityCommutative eqY) = refl
valuationIsDetermined v1 v2 pr {implies x y} | eqX | eqY | BoolFalse with p rewrite p | Valuation.vImplicationVacuous v1 {q = y} p | Valuation.vImplicationVacuous v2 {q = y} (equalityCommutative eqX) = refl
extendValuation : {a : _} {pr : Set a} (w : pr Bool) Valuation pr
Valuation.v (extendValuation w) (ofPrimitive x) = w x
Valuation.v (extendValuation w) false = BoolFalse
Valuation.v (extendValuation w) (implies x y) with Valuation.v (extendValuation w) x
Valuation.v (extendValuation w) (implies x y) | BoolTrue with Valuation.v (extendValuation w) y
Valuation.v (extendValuation w) (implies x y) | BoolTrue | BoolTrue = BoolTrue
Valuation.v (extendValuation w) (implies x y) | BoolTrue | BoolFalse = BoolFalse
Valuation.v (extendValuation w) (implies x y) | BoolFalse = BoolTrue
Valuation.vFalse (extendValuation w) = refl
Valuation.vImplicationF (extendValuation w) {p} {q} pT qF with Valuation.v (extendValuation w) p
Valuation.vImplicationF (extendValuation w) {p} {q} refl qF | BoolTrue with Valuation.v (extendValuation w) q
Valuation.vImplicationF (extendValuation w) {p} {q} refl () | BoolTrue | BoolTrue
Valuation.vImplicationF (extendValuation w) {p} {q} refl refl | BoolTrue | BoolFalse = refl
Valuation.vImplicationF (extendValuation w) {p} {q} () qF | BoolFalse
Valuation.vImplicationVacuous (extendValuation w) {p} {q} pF with Valuation.v (extendValuation w) p
Valuation.vImplicationVacuous (extendValuation w) {p} {q} () | BoolTrue
Valuation.vImplicationVacuous (extendValuation w) {p} {q} refl | BoolFalse = refl
Valuation.vImplicationT (extendValuation w) {p} {q} qT with Valuation.v (extendValuation w) p
Valuation.vImplicationT (extendValuation w) {p} {q} qT | BoolTrue with Valuation.v (extendValuation w) q
Valuation.vImplicationT (extendValuation w) {p} {q} refl | BoolTrue | BoolTrue = refl
Valuation.vImplicationT (extendValuation w) {p} {q} () | BoolTrue | BoolFalse
Valuation.vImplicationT (extendValuation w) {p} {q} qT | BoolFalse = refl
-- Proposition 1b
valuationsAreFree : {a : _} {pr : Set a} (w : pr Bool) {x : pr} Valuation.v (extendValuation w) (ofPrimitive x) w x
valuationsAreFree w = refl
record Tautology {a : _} {pr : Set a} (prop : Propositions pr) : Set a where
field
isTaut : {v : Valuation pr} Valuation.v v prop BoolTrue
record IsSubset {a b : _} (sub : Set a) (super : Set b) : Set (a b) where
field
ofElt : sub super
inj : Injection ofElt
mapProp : {a b : _} {pr1 : Set a} {pr2 : Set b} (pr1 pr2) Propositions pr1 Propositions pr2
mapProp f (ofPrimitive x) = ofPrimitive (f x)
mapProp f false = false
mapProp f (implies p q) = implies (mapProp f p) (mapProp f q)
inheritedValuation : {a b : _} {sub : Set a} {super : Set b} (IsSubset sub super) Valuation super Valuation sub
Valuation.v (inheritedValuation isSub v) prop = Valuation.v v (mapProp (IsSubset.ofElt isSub) prop)
Valuation.vFalse (inheritedValuation isSub v) = Valuation.vFalse v
Valuation.vImplicationF (inheritedValuation isSub v) pT qF = Valuation.vImplicationF v pT qF
Valuation.vImplicationVacuous (inheritedValuation isSub v) pF = Valuation.vImplicationVacuous v pF
Valuation.vImplicationT (inheritedValuation isSub v) qT = Valuation.vImplicationT v qT
inheritedValuation' : {a b : _} {sub : Set a} {super : Set b} (IsSubset sub (Propositions super)) Valuation super (x : sub) Bool
inheritedValuation' subset v x = Valuation.v v (IsSubset.ofElt subset x)
record Entails {a b : _} {sub : Set a} {super : Set b} (S : IsSubset sub (Propositions super)) (P : Propositions super) : Set (a b) where
field
entails : {v : Valuation super} ({s : sub} inheritedValuation' S v s BoolTrue) Valuation.v v P BoolTrue
data ThreeElements : Set where
One : ThreeElements
Two : ThreeElements
Three : ThreeElements
indexAxiom : {a : _} (A : Set a) ThreeElements Set a
indexAxiom A One = Propositions A && Propositions A
indexAxiom A Two = Propositions A & Propositions A & Propositions A
indexAxiom A Three = Propositions A
indexPropositionalAxioms : {a : _} {A : Set a} Set a
indexPropositionalAxioms {A = A} = Sg ThreeElements (indexAxiom A)
-- An axiom system is simply a subset of a set of propositions.
propositionalAxioms : {a : _} {A : Set a} IsSubset (indexPropositionalAxioms {A = A}) (Propositions A)
IsSubset.ofElt propositionalAxioms (One , (p ,, q)) = implies p (implies q p)
IsSubset.ofElt propositionalAxioms (Two , record { one = p ; two = q ; three = r }) = implies (implies p (implies q r)) (implies (implies p q) (implies p r))
IsSubset.ofElt propositionalAxioms (Three , p) = implies (prNot (prNot p)) p
Injection.property (IsSubset.inj propositionalAxioms) {One , (p ,, q)} {One , (a ,, b)} pr with impliesInjective pr
Injection.property (IsSubset.inj propositionalAxioms) {One , (p ,, q)} {One , (a ,, b)} pr | fst ,, snd with impliesInjective snd
Injection.property (IsSubset.inj propositionalAxioms) {One , (p ,, q)} {One , (a ,, b)} pr | p=a ,, _ | q=b ,, _ rewrite p=a | q=b = refl
Injection.property (IsSubset.inj propositionalAxioms) {One , (p ,, q)} {Two , record { one = a ; two = b ; three = c }} pr with impliesInjective pr
Injection.property (IsSubset.inj propositionalAxioms) {One , (p ,, q)} {Two , record { one = a ; two = b ; three = c }} pr | fst ,, snd with impliesInjective snd
Injection.property (IsSubset.inj propositionalAxioms) {One , (p ,, q)} {Two , record { one = a ; two = b ; three = c }} pr | p=a-b-c ,, _ | q=a-b ,, p=a-c with impliesInjective (transitivity (equalityCommutative p=a-c) p=a-b-c)
Injection.property (IsSubset.inj propositionalAxioms) {One , (p ,, q)} {Two , record { one = a ; two = b ; three = c }} pr | p=a-b-c ,, _ | q=a-b ,, p=a-c | _ ,, c=b->c = exFalso (impliesIsBigger c=b->c)
Injection.property (IsSubset.inj propositionalAxioms) {One , (p ,, q)} {Three , b} pr with impliesInjective pr
Injection.property (IsSubset.inj propositionalAxioms) {One , (p ,, q)} {Three , b} pr | p=nnb ,, q-p=b rewrite equalityCommutative q-p=b = exFalso (d pr)
where
d : _ _
d ()
Injection.property (IsSubset.inj propositionalAxioms) {Two , record { one = p ; two = q ; three = r }} {One , (fst ,, snd)} ()
Injection.property (IsSubset.inj propositionalAxioms) {Two , record { one = p ; two = q ; three = r }} {Two , record { one = one ; two = two ; three = three }} pr with impliesInjective pr
Injection.property (IsSubset.inj propositionalAxioms) {Two , record { one = p ; two = q ; three = r }} {Two , record { one = one ; two = two ; three = three }} pr | fst ,, snd with impliesInjective fst
Injection.property (IsSubset.inj propositionalAxioms) {Two , record { one = p ; two = q ; three = r }} {Two , record { one = one ; two = two ; three = three }} pr | _ ,, snd | p=one ,, snd1 with impliesInjective snd1
Injection.property (IsSubset.inj propositionalAxioms) {Two , record { one = p ; two = q ; three = r }} {Two , record { one = one ; two = two ; three = three }} pr | _ ,, snd | p=one ,, _ | q=two ,, r=three rewrite p=one | q=two | r=three = refl
Injection.property (IsSubset.inj propositionalAxioms) {Two , record { one = p ; two = q ; three = r }} {Three , b} ()
Injection.property (IsSubset.inj propositionalAxioms) {Three , p} {One , (a ,, b)} pr with impliesInjective pr
Injection.property (IsSubset.inj propositionalAxioms) {Three , p} {One , (a ,, b)} () | nnp=a ,, p=b-a
Injection.property (IsSubset.inj propositionalAxioms) {Three , p} {Two , record { one = a ; two = b ; three = c }} ()
Injection.property (IsSubset.inj propositionalAxioms) {Three , p} {Three , b} pr rewrite _&&_.snd (impliesInjective pr) = refl
record Selection {a : _} {A : Set a} {n : } (l : Vec A n) : Set a where
field
element : A
position :
pos<N : position <N n
elementIsAt : vecIndex l position pos<N element
data Proof {a b c : _} {A : Set a} {axioms : Set b} (axiomsSubset : IsSubset axioms (Propositions A)) {givens : Set c} (givensSubset : IsSubset givens (Propositions A)) : (n : ) Set (a b c)
data ProofStep {a b c : _} {A : Set a} {axioms : Set b} (axiomsSubset : IsSubset axioms (Propositions A)) {givens : Set c} (givensSubset : IsSubset givens (Propositions A)) {n : } (proofSoFar : Proof {a} {b} {c} {A} {axioms} axiomsSubset {givens} givensSubset n) : Set (a b c)
toSteps : {a b c : _} {A : Set a} {axioms : Set b} {axiomsSubset : IsSubset axioms (Propositions A)} {givens : Set c} {givensSubset : IsSubset givens (Propositions A)} {n : } (pr : Proof {axioms = axioms} axiomsSubset {givens = givens} givensSubset n) Vec (Propositions A) n
data ProofStep {a} {b} {c} {A} {axioms} axiomsSubset {givens} givensSubset proofSoFar where
axiom : axioms ProofStep axiomsSubset givensSubset proofSoFar
given : givens ProofStep axiomsSubset givensSubset proofSoFar
modusPonens : (implication : Selection (toSteps proofSoFar)) (argument : Selection (toSteps proofSoFar)) (conclusion : Propositions A) (Selection.element implication implies (Selection.element argument) conclusion) ProofStep axiomsSubset givensSubset proofSoFar
data Proof {a} {b} {c} {A} {axioms} axiomsSubset {givens} givensSubset where
empty : Proof axiomsSubset givensSubset 0
nextStep : (n : ) (previous : Proof {axioms = axioms} axiomsSubset {givens = givens} givensSubset n) ProofStep axiomsSubset givensSubset previous Proof axiomsSubset givensSubset (succ n)
toSteps empty = []
toSteps {axiomsSubset = axiomsSubset} (nextStep n pr (axiom x)) = (IsSubset.ofElt axiomsSubset x) ,- toSteps pr
toSteps {givensSubset = givensSubset} (nextStep n pr (given x)) = IsSubset.ofElt givensSubset x ,- toSteps pr
toSteps (nextStep n pr (modusPonens implication argument conclusion x)) = conclusion ,- toSteps pr

View File

@@ -0,0 +1,99 @@
{-# OPTIONS --safe --warning=error #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Logic.PropositionalLogic
open import Functions
open import Numbers.Naturals
open import Vectors
module Logic.PropositionalLogicExamples where
axiomK : {a : _} {A : Set a} {P Q : Propositions A} Tautology (implies P (implies Q P))
Tautology.isTaut (axiomK {P = P} {Q}) {v = v} with inspect (Valuation.v v P)
Tautology.isTaut (axiomK {P = P} {Q}) {v} | BoolTrue with pT with inspect (Valuation.v v Q)
Tautology.isTaut (axiomK {P = P} {Q}) {v} | BoolTrue with pT | BoolTrue with qT = Valuation.vImplicationT v (Valuation.vImplicationT v pT)
Tautology.isTaut (axiomK {P = P} {Q}) {v} | BoolTrue with pT | BoolFalse with qF = Valuation.vImplicationT v (Valuation.vImplicationVacuous v qF)
Tautology.isTaut (axiomK {P = P} {Q}) {v} | BoolFalse with pF = Valuation.vImplicationVacuous v pF
excludedMiddle : {a : _} {A : Set a} {P : Propositions A} Tautology (implies (prNot (prNot P)) P)
Tautology.isTaut (excludedMiddle {P = P}) {v} with inspect (Valuation.v v P)
Tautology.isTaut (excludedMiddle {P = P}) {v} | BoolTrue with pT = Valuation.vImplicationT v pT
Tautology.isTaut (excludedMiddle {P = P}) {v} | BoolFalse with pF = Valuation.vImplicationVacuous v (Valuation.vImplicationF v (Valuation.vImplicationVacuous v pF) (Valuation.vFalse v))
axiomS : {a : _} {A : Set a} {P Q R : Propositions A} Tautology (implies (implies P (implies Q R)) (implies (implies P Q) (implies P R)))
Tautology.isTaut (axiomS {P = P} {Q} {R}) {v} with inspect (Valuation.v v P)
Tautology.isTaut (axiomS {P = P} {Q} {R}) {v} | BoolTrue with pT with inspect (Valuation.v v Q)
Tautology.isTaut (axiomS {P = P} {Q} {R}) {v} | BoolTrue with pT | BoolTrue with qT with inspect (Valuation.v v R)
Tautology.isTaut (axiomS {P = P} {Q} {R}) {v} | BoolTrue with pT | BoolTrue with qT | BoolTrue with rT = Valuation.vImplicationT v (Valuation.vImplicationT v (Valuation.vImplicationT v rT))
Tautology.isTaut (axiomS {P = P} {Q} {R}) {v} | BoolTrue with pT | BoolTrue with qT | BoolFalse with rF = Valuation.vImplicationVacuous v (Valuation.vImplicationF v pT (Valuation.vImplicationF v qT rF))
Tautology.isTaut (axiomS {P = P} {Q} {R}) {v} | BoolTrue with pT | BoolFalse with qF = Valuation.vImplicationT v (Valuation.vImplicationVacuous v (Valuation.vImplicationF v pT qF))
Tautology.isTaut (axiomS {P = P} {Q} {R}) {v} | BoolFalse with pF = Valuation.vImplicationT v (Valuation.vImplicationT v (Valuation.vImplicationVacuous v pF))
emptySubset : {a : _} (A : Set a) IsSubset False A
emptySubset A = record { ofElt = λ () ; inj = record { property = λ {x} exFalso x } }
emptyEntailment : {a b : _} {A : Set a} {P : Propositions A} Entails (emptySubset (Propositions A)) P Tautology P
Tautology.isTaut (emptyEntailment {a} {b} {A} {P} record { entails = entails }) {v} = entails {v} λ {s} exFalso s
emptyEntailment' : {a b : _} {A : Set a} {P : Propositions A} Tautology P Entails (emptySubset (Propositions A)) P
Entails.entails (emptyEntailment' record { isTaut = isTaut }) {v} _ = isTaut {v}
data TwoElements : Set where
One : TwoElements
Two : TwoElements
twoElementSubset : {a : _} {A : Set a} {P Q R : Propositions A} TwoElements Propositions A
twoElementSubset {P = P} {Q} {R} One = implies P Q
twoElementSubset {P = P} {Q} {R} Two = implies Q R
twoElementSubsetInj : {a : _} {A : Set a} {P Q R : Propositions A} (P Q False) Injection (twoElementSubset {P = P} {Q} {R})
Injection.property (twoElementSubsetInj {P = P} {Q} {R} p!=q) {One} {One} refl = refl
Injection.property (twoElementSubsetInj {P = P} {Q} {R} p!=q) {One} {Two} pr with impliesInjective pr
Injection.property (twoElementSubsetInj {P = P} {Q} {R} p!=q) {One} {Two} pr | fst ,, snd = exFalso (p!=q fst)
Injection.property (twoElementSubsetInj {P = P} {Q} {R} p!=q) {Two} {One} pr with impliesInjective pr
Injection.property (twoElementSubsetInj {P = P} {Q} {R} p!=q) {Two} {One} pr | fst ,, snd = exFalso (p!=q (equalityCommutative fst))
Injection.property (twoElementSubsetInj {P = P} {Q} {R} p!=q) {Two} {Two} refl = refl
badBool : BoolFalse BoolTrue False
badBool ()
semanticEntailmentTransitive : {a : _} {A : Set a} {P Q R : Propositions A} (p!=q : P Q False) Entails record { ofElt = twoElementSubset ; inj = twoElementSubsetInj {R = R} p!=q } (implies P R)
Entails.entails (semanticEntailmentTransitive {P = P} {Q} {R} p!=q) {v} pr with inspect (Valuation.v v P)
Entails.entails (semanticEntailmentTransitive {P = P} {Q} {R} p!=q) {v} pr | BoolTrue with pT with inspect (Valuation.v v Q)
Entails.entails (semanticEntailmentTransitive {P = P} {Q} {R} p!=q) {v} pr | BoolTrue with pT | BoolTrue with qT with inspect (Valuation.v v R)
Entails.entails (semanticEntailmentTransitive {P = P} {Q} {R} p!=q) {v} pr | BoolTrue with pT | BoolTrue with qT | BoolTrue with rT = Valuation.vImplicationT v rT
Entails.entails (semanticEntailmentTransitive {P = P} {Q} {R} p!=q) {v} pr | BoolTrue with pT | BoolTrue with qT | BoolFalse with rF = exFalso (badBool (transitivity (equalityCommutative (Valuation.vImplicationF v qT rF)) (pr {Two})))
Entails.entails (semanticEntailmentTransitive {P = P} {Q} {R} p!=q) {v} pr | BoolTrue with pT | BoolFalse with qF = exFalso (badBool (transitivity (equalityCommutative (Valuation.vImplicationF v pT qF)) (pr {One})))
Entails.entails (semanticEntailmentTransitive {P = P} {Q} {R} p!=q) {v} pr | BoolFalse with pF = Valuation.vImplicationVacuous v pF
-- Subset {p -> q, q -> r}
pQQR : {a : _} {A : Set a} {P Q R : Propositions A} TwoElements Propositions A
pQQR {P = P} {Q} {R} One = implies P Q
pQQR {P = P} {Q} {R} Two = implies Q R
pQQRSubsetInj : {a : _} {A : Set a} {P Q R : Propositions A} (P Q False) Injection (pQQR {P = P} {Q} {R})
Injection.property (pQQRSubsetInj {P = P} {Q} {R} p!=q) {One} {One} refl = refl
Injection.property (pQQRSubsetInj {P = P} {Q} {R} p!=q) {One} {Two} pr with impliesInjective pr
Injection.property (pQQRSubsetInj {P = P} {Q} {R} p!=q) {One} {Two} pr | p=q ,, _ = exFalso (p!=q p=q)
Injection.property (pQQRSubsetInj {P = P} {Q} {R} p!=q) {Two} {One} pr with impliesInjective pr
Injection.property (pQQRSubsetInj {P = P} {Q} {R} p!=q) {Two} {One} pr | q=p ,, _ = exFalso (p!=q (equalityCommutative q=p))
Injection.property (pQQRSubsetInj {P = P} {Q} {R} p!=q) {Two} {Two} refl = refl
_|>_ : {a b : _} {A : Set a} {B : Set b} (a : A) (f : A B) B
a |> f = f a
infix 1 _|>_
_||>_!_ : {a b c : _} {A : Set a} {B : Set b} {C : Set c} (a : A) (f : A B C) (b : B) C
b ||> f ! a = f b a
infix 1 _||>_!_
f : ( && )
f a b = a ,, b
e : &&
e = 5
||> f ! 3
syntacticEntailmentExample : {a : _} {A : Set a} {P Q R : Propositions A} (p!=q : P Q False) Proof propositionalAxioms (record { ofElt = pQQR {P = P} {Q} {R} ; inj = pQQRSubsetInj p!=q }) 7
syntacticEntailmentExample {P = P} {Q} {R} p!=q = nextStep 6 (nextStep 5 (nextStep 4 (nextStep 3 (nextStep 2 (nextStep 1 (nextStep 0 empty (axiom (Two , record { one = P ; two = Q ; three = R }))) (given Two)) (axiom (One , ((implies Q R) ,, P)))) (modusPonens (record { element = implies (implies Q R) (implies P (implies Q R)) ; position = 0 ; pos<N = succIsPositive _ ; elementIsAt = refl }) (record { element = implies Q R ; position = 1 ; elementIsAt = refl ; pos<N = succPreservesInequality (succIsPositive _) }) (implies P (implies Q R)) refl)) (modusPonens (record { element = implies (implies P (implies Q R)) (implies (implies P Q) (implies P R)) ; position = 3 ; pos<N = le 0 refl ; elementIsAt = refl }) (record { element = implies P (implies Q R) ; position = 0 ; pos<N = succIsPositive _ ; elementIsAt = refl }) (implies (implies P Q) (implies P R)) refl)) (given One)) (modusPonens (record { element = implies (implies P Q) (implies P R) ; position = 1 ; pos<N = succPreservesInequality (succIsPositive _) ; elementIsAt = refl }) (record { element = implies P Q ; position = 0 ; pos<N = succIsPositive _ ; elementIsAt = refl }) (implies P R) refl)