Quotient ring (#81)

This commit is contained in:
Patrick Stevens
2019-11-21 07:28:25 +00:00
committed by GitHub
parent d4f51a3efe
commit b33baa5fb7
12 changed files with 125 additions and 64 deletions

49
Rings/Cosets.agda Normal file
View File

@@ -0,0 +1,49 @@
{-# OPTIONS --warning=error --safe --without-K #-}
open import Functions
open import Sets.FinSet
open import LogicalFormulae
open import Groups.Definition
open import Groups.Groups
open import Groups.FiniteGroups.Definition
open import Rings.Homomorphisms.Definition
open import Groups.Homomorphisms.Definition
open import Groups.Abelian.Definition
open import Setoids.Setoids
open import Rings.Definition
open import Fields.FieldOfFractions.Setoid
open import Sets.EquivalenceRelations
open import Groups.Lemmas
open import Groups.Subgroups.Definition
open import Groups.QuotientGroup.Definition
open import Rings.Ideals.Definition
module Rings.Cosets {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} (R : Ring S _+_ _*_) {pred : A Set c} (ideal : Ideal R pred) where
open Ring R
open import Rings.Lemmas R
open import Groups.Subgroups.Normal.Lemmas
open import Groups.Cosets additiveGroup (Ideal.isSubgroup ideal)
open Setoid S
open Equivalence eq
open Ideal ideal
open Group additiveGroup
cosetRing : Ring cosetSetoid _+_ _*_
Ring.additiveGroup cosetRing = cosetGroup (abelianGroupSubgroupIsNormal (Ideal.isSubgroup ideal) abelianUnderlyingGroup)
Ring.*WellDefined cosetRing {r} {s} {t} {u} r=t s=u = need
where
r=t' : pred ((inverse t + r) * u)
r=t' = accumulatesTimes r=t
s=u' : pred ((inverse u + s) * r)
s=u' = accumulatesTimes s=u
need : pred (inverse (t * u) + (r * s))
need = isSubset (transitive (+WellDefined (*DistributesOver+') *DistributesOver+') (transitive +Associative (+WellDefined (transitive (symmetric +Associative) (transitive (+WellDefined ringMinusExtracts' (transitive (+WellDefined reflexive (transitive ringMinusExtracts' (inverseWellDefined additiveGroup *Commutative))) invRight)) identRight)) *Commutative))) (closedUnderPlus r=t' s=u')
Ring.1R cosetRing = 1R
Ring.groupIsAbelian cosetRing = isSubset (transitive (symmetric invLeft) (+WellDefined (inverseWellDefined additiveGroup groupIsAbelian) reflexive)) containsIdentity
Ring.*Associative cosetRing = isSubset (transitive (symmetric invLeft) (+WellDefined (inverseWellDefined additiveGroup *Associative) reflexive)) containsIdentity
Ring.*Commutative cosetRing {a} {b} = isSubset (transitive (symmetric invLeft) (+WellDefined (inverseWellDefined additiveGroup *Commutative) reflexive)) containsIdentity
Ring.*DistributesOver+ cosetRing = isSubset (symmetric (transitive (+WellDefined (inverseWellDefined additiveGroup (symmetric *DistributesOver+)) reflexive) invLeft)) containsIdentity
Ring.identIsIdent cosetRing = isSubset (symmetric (transitive (Group.+WellDefined additiveGroup reflexive identIsIdent) invLeft)) containsIdentity

View File

@@ -22,8 +22,14 @@ open import Groups.Subgroups.Definition (Ring.additiveGroup R)
ringKernel : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+2_ _*2_ : C C C} (R2 : Ring T _+2_ _*2_) {f : A C} (fHom : RingHom R R2 f) Set (a d)
ringKernel {T = T} R2 {f} fHom = Sg A (λ a Setoid.__ T (f a) (Ring.0R R2))
ideal : {c : _} (pred : A Set c) Set (a b c)
ideal pred = subgroup pred && ({x : A} {y : A} pred x pred (x * y))
record Ideal {c : _} (pred : A Set c) : Set (a b c) where
field
isSubgroup : Subgroup pred
accumulatesTimes : {x : A} {y : A} pred x pred (x * y)
closedUnderPlus = Subgroup.closedUnderPlus isSubgroup
closedUnderInverse = Subgroup.closedUnderInverse isSubgroup
containsIdentity = Subgroup.containsIdentity isSubgroup
isSubset = Subgroup.isSubset isSubgroup
idealPredForKernel : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+2_ _*2_ : C C C} (R2 : Ring T _+2_ _*2_) {f : A C} (fHom : RingHom R R2 f) A Set d
idealPredForKernel {T = T} R2 {f} fHom a = Setoid.__ T (f a) (Ring.0R R2)
@@ -31,22 +37,22 @@ idealPredForKernel {T = T} R2 {f} fHom a = Setoid.__ T (f a) (Ring.0R R2)
idealPredForKernelWellDefined : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+2_ _*2_ : C C C} (R2 : Ring T _+2_ _*2_) {f : A C} (fHom : RingHom R R2 f) {x y : A} (Setoid.__ S x y) (idealPredForKernel R2 fHom x idealPredForKernel R2 fHom y)
idealPredForKernelWellDefined {T = T} R2 {f} fHom a x=0 = Equivalence.transitive (Setoid.eq T) (GroupHom.wellDefined (RingHom.groupHom fHom) (Equivalence.symmetric (Setoid.eq S) a)) x=0
kernelIdealIsIdeal : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+2_ _*2_ : C C C} {R2 : Ring T _+2_ _*2_} {f : A C} (fHom : RingHom R R2 f) ideal (idealPredForKernel R2 fHom)
_&&_.fst (_&&_.fst (kernelIdealIsIdeal {R2 = R2} fHom)) = idealPredForKernelWellDefined R2 fHom
_&_&_.one (_&&_.snd (_&&_.fst (kernelIdealIsIdeal {T = T} {R2 = R2} fHom))) {x} {y} fx=0 fy=0 = transitive (transitive (GroupHom.groupHom (RingHom.groupHom fHom)) (+WellDefined fx=0 fy=0)) identLeft
kernelIdealIsIdeal : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+2_ _*2_ : C C C} {R2 : Ring T _+2_ _*2_} {f : A C} (fHom : RingHom R R2 f) Ideal (idealPredForKernel R2 fHom)
Subgroup.isSubset (Ideal.isSubgroup (kernelIdealIsIdeal {R2 = R2} fHom)) = idealPredForKernelWellDefined R2 fHom
Subgroup.closedUnderPlus (Ideal.isSubgroup (kernelIdealIsIdeal {T = T} {R2 = R2} fHom)) {x} {y} fx=0 fy=0 = transitive (transitive (GroupHom.groupHom (RingHom.groupHom fHom)) (+WellDefined fx=0 fy=0)) identLeft
where
open Ring R2
open Group (Ring.additiveGroup R2)
open Setoid T
open Equivalence eq
_&_&_.two (_&&_.snd (_&&_.fst (kernelIdealIsIdeal fHom))) = imageOfIdentityIsIdentity (RingHom.groupHom fHom)
_&_&_.three (_&&_.snd (_&&_.fst (kernelIdealIsIdeal {T = T} {R2 = R2} fHom))) {x} fx=0 = zeroImpliesInverseZero (RingHom.groupHom fHom) fx=0
Subgroup.containsIdentity (Ideal.isSubgroup (kernelIdealIsIdeal fHom)) = imageOfIdentityIsIdentity (RingHom.groupHom fHom)
Subgroup.closedUnderInverse (Ideal.isSubgroup (kernelIdealIsIdeal {T = T} {R2 = R2} fHom)) {x} fx=0 = zeroImpliesInverseZero (RingHom.groupHom fHom) fx=0
where
open Ring R2
open Group (Ring.additiveGroup R2)
open Setoid T
open Equivalence eq
_&&_.snd (kernelIdealIsIdeal {T = T} {R2 = R2} {f = f} fHom) {x} {y} fx=0 = transitive (RingHom.ringHom fHom) (transitive (Ring.*WellDefined R2 fx=0 reflexive) (transitive (Ring.*Commutative R2) (Ring.timesZero R2 {f y})))
Ideal.accumulatesTimes (kernelIdealIsIdeal {T = T} {R2 = R2} {f = f} fHom) {x} {y} fx=0 = transitive (RingHom.ringHom fHom) (transitive (Ring.*WellDefined R2 fx=0 reflexive) (transitive (Ring.*Commutative R2) (Ring.timesZero R2 {f y})))
where
open Setoid T
open Equivalence eq

View File

@@ -3,6 +3,7 @@
open import LogicalFormulae
open import Functions
open import Groups.Groups
open import Groups.Abelian.Definition
open import Groups.Definition
open import Groups.Lemmas
open import Rings.Definition
@@ -54,3 +55,6 @@ abstract
charNot2ImpliesNontrivial : ((1R + 1R) 0R False) (0R 1R) False
charNot2ImpliesNontrivial charNot2 0=1 = charNot2 (Equivalence.transitive eq (+WellDefined (Equivalence.symmetric eq 0=1) (Equivalence.symmetric eq 0=1)) identRight)
abelianUnderlyingGroup : AbelianGroup additiveGroup
abelianUnderlyingGroup = record { commutative = groupIsAbelian }

View File

@@ -20,20 +20,20 @@ module Rings.Quotients.Definition {a b c d : _} {A : Set a} {B : Set b} {S : Set
open import Groups.QuotientGroup.Lemmas (Ring.additiveGroup R) (Ring.additiveGroup R2) (RingHom.groupHom f)
quotientRing : Ring (quotientGroupSetoid (Ring.additiveGroup R) (RingHom.groupHom f)) _+A_ _*A_
Ring.additiveGroup quotientRing = quotientGroupByHom (Ring.additiveGroup R) (RingHom.groupHom f)
Ring.*WellDefined quotientRing fr=ft fs=fu = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (transitive (RingHom.ringHom f) (transitive (Ring.*WellDefined R2 (quotientGroupLemma' (Ring.additiveGroup R) (RingHom.groupHom f) fr=ft) (quotientGroupLemma' (Ring.additiveGroup R) (RingHom.groupHom f) fs=fu)) (symmetric (RingHom.ringHom f))))
quotientByRingHom : Ring (quotientGroupSetoid (Ring.additiveGroup R) (RingHom.groupHom f)) _+A_ _*A_
Ring.additiveGroup quotientByRingHom = quotientGroupByHom (Ring.additiveGroup R) (RingHom.groupHom f)
Ring.*WellDefined quotientByRingHom fr=ft fs=fu = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (transitive (RingHom.ringHom f) (transitive (Ring.*WellDefined R2 (quotientGroupLemma' (Ring.additiveGroup R) (RingHom.groupHom f) fr=ft) (quotientGroupLemma' (Ring.additiveGroup R) (RingHom.groupHom f) fs=fu)) (symmetric (RingHom.ringHom f))))
where
open Setoid T
open Equivalence eq
Ring.1R quotientRing = Ring.1R R
Ring.groupIsAbelian quotientRing = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.groupIsAbelian R))
Ring.*Associative quotientRing = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.*Associative R))
Ring.*Commutative quotientRing = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.*Commutative R))
Ring.*DistributesOver+ quotientRing = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.*DistributesOver+ R))
Ring.identIsIdent quotientRing = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.identIsIdent R))
Ring.1R quotientByRingHom = Ring.1R R
Ring.groupIsAbelian quotientByRingHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.groupIsAbelian R))
Ring.*Associative quotientByRingHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.*Associative R))
Ring.*Commutative quotientByRingHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.*Commutative R))
Ring.*DistributesOver+ quotientByRingHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.*DistributesOver+ R))
Ring.identIsIdent quotientByRingHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.identIsIdent R))
projectionMapIsHom : RingHom R quotientRing id
projectionMapIsHom : RingHom R quotientByRingHom id
RingHom.preserves1 projectionMapIsHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (Equivalence.reflexive (Setoid.eq T))
RingHom.ringHom projectionMapIsHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (Equivalence.reflexive (Setoid.eq T))
RingHom.groupHom projectionMapIsHom = projectionMapIsGroupHom