Lots of speedups (#116)

This commit is contained in:
Patrick Stevens
2020-04-16 13:41:51 +01:00
committed by GitHub
parent 1bcb3f8537
commit 9b80058157
63 changed files with 1082 additions and 564 deletions

View File

@@ -5,7 +5,6 @@ open import Groups.Groups
open import Groups.Homomorphisms.Definition
open import Groups.Definition
open import Numbers.Naturals.Naturals
open import Setoids.Orders
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations

View File

@@ -25,10 +25,10 @@ open Setoid S
open Equivalence eq
open import Rings.Lemmas R
open import Groups.Lemmas additiveGroup
open import Groups.Cyclic.Definition additiveGroup
fromN : A
fromN zero = 0R
fromN (succ n) = 1R + fromN n
fromN = positiveEltPower 1R
fromNPreserves+ : (a b : ) fromN (a +N b) (fromN a) + (fromN b)
fromNPreserves+ zero b = symmetric identLeft

View File

@@ -7,7 +7,7 @@ open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Sets.EquivalenceRelations
open import Sequences
open import Setoids.Orders
open import Setoids.Orders.Partial.Definition
open import Functions
open import LogicalFormulae
open import Numbers.Naturals.Semiring

View File

@@ -1,8 +1,8 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Definition
open import Setoids.Orders
open import Setoids.Setoids
open import Setoids.Orders.Partial.Definition
open import Functions
open import Rings.Definition
@@ -13,9 +13,13 @@ module Rings.Orders.Partial.Definition {n m : _} {A : Set n} {S : Setoid {n} {m}
open Ring R
open Group additiveGroup
open Setoid S
open import Groups.Orders.Partial.Definition
record PartiallyOrderedRing {p : _} {_<_ : Rel {_} {p} A} (pOrder : SetoidPartialOrder S _<_) : Set (lsuc n m p) where
field
orderRespectsAddition : {a b : A} (a < b) (c : A) (a + c) < (b + c)
orderRespectsMultiplication : {a b : A} (0R < a) (0R < b) (0R < (a * b))
open SetoidPartialOrder pOrder
toGroup : {p : _} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} PartiallyOrderedRing pOrder PartiallyOrderedGroup additiveGroup pOrder
PartiallyOrderedGroup.orderRespectsAddition (toGroup p) = PartiallyOrderedRing.orderRespectsAddition p

View File

@@ -3,7 +3,7 @@
open import LogicalFormulae
open import Groups.Lemmas
open import Groups.Definition
open import Setoids.Orders
open import Setoids.Orders.Partial.Definition
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
@@ -91,3 +91,17 @@ abstract
negativeInequality : {a : A} a < 0G 0G < inverse a
negativeInequality {a} a<0 = <WellDefined invRight identLeft (orderRespectsAddition a<0 (inverse a))
negativeInequality' : {a : A} 0G < a inverse a < 0G
negativeInequality' {a} 0<a = <WellDefined identLeft invRight (orderRespectsAddition 0<a (inverse a))
open import Rings.InitialRing R
fromNIncreasing : (0R < 1R) (n : ) (fromN n) < (fromN (succ n))
fromNIncreasing 0<1 zero = <WellDefined reflexive (symmetric identRight) 0<1
fromNIncreasing 0<1 (succ n) = <WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (fromNIncreasing 0<1 n) 1R)
fromNPreservesOrder : (0R < 1R) {a b : } (a <N b) (fromN a) < (fromN b)
fromNPreservesOrder 0<1 {zero} {succ zero} a<b = fromNIncreasing 0<1 0
fromNPreservesOrder 0<1 {zero} {succ (succ b)} a<b = <Transitive (fromNPreservesOrder 0<1 (succIsPositive b)) (fromNIncreasing 0<1 (succ b))
fromNPreservesOrder 0<1 {succ a} {succ b} a<b = <WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (fromNPreservesOrder 0<1 (canRemoveSuccFrom<N a<b)) 1R)

View File

@@ -0,0 +1,217 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Lemmas
open import Groups.Definition
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Rings.Orders.Total.Definition
open import Rings.Orders.Partial.Definition
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Orders.Total.Definition
open import Rings.IntegralDomains.Definition
module Rings.Orders.Total.AbsoluteValue {n m p : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} {pOrderRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pOrderRing) where
open Ring R
open Group additiveGroup
open Setoid S
open SetoidPartialOrder pOrder
open TotallyOrderedRing order
open SetoidTotalOrder total
open PartiallyOrderedRing pOrderRing
open import Rings.Lemmas R
open import Rings.Orders.Partial.Lemmas pOrderRing
open import Rings.Orders.Total.Lemmas order
abs : A A
abs a with totality 0R a
abs a | inl (inl 0<a) = a
abs a | inl (inr a<0) = inverse a
abs a | inr 0=a = a
absWellDefined : (a b : A) a b abs a abs b
absWellDefined a b a=b with totality 0R a
absWellDefined a b a=b | inl (inl 0<a) with totality 0R b
absWellDefined a b a=b | inl (inl 0<a) | inl (inl 0<b) = a=b
absWellDefined a b a=b | inl (inl 0<a) | inl (inr b<0) = exFalso (irreflexive {0G} (<Transitive 0<a (<WellDefined (Equivalence.symmetric eq a=b) (Equivalence.reflexive eq) b<0)))
absWellDefined a b a=b | inl (inl 0<a) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq a=b (Equivalence.symmetric eq 0=b)) 0<a))
absWellDefined a b a=b | inl (inr a<0) with totality 0R b
absWellDefined a b a=b | inl (inr a<0) | inl (inl 0<b) = exFalso (irreflexive {0G} (<Transitive 0<b (<WellDefined a=b (Equivalence.reflexive eq) a<0)))
absWellDefined a b a=b | inl (inr a<0) | inl (inr b<0) = inverseWellDefined additiveGroup a=b
absWellDefined a b a=b | inl (inr a<0) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq a=b (Equivalence.symmetric eq 0=b)) (Equivalence.reflexive eq) a<0))
absWellDefined a b a=b | inr 0=a with totality 0R b
absWellDefined a b a=b | inr 0=a | inl (inl 0<b) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (Equivalence.transitive eq 0=a a=b)) 0<b))
absWellDefined a b a=b | inr 0=a | inl (inr b<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq 0=a a=b)) (Equivalence.reflexive eq) b<0))
absWellDefined a b a=b | inr 0=a | inr 0=b = a=b
triangleInequality : (a b : A) ((abs (a + b)) < ((abs a) + (abs b))) || (abs (a + b) (abs a) + (abs b))
triangleInequality a b with totality 0R (a + b)
triangleInequality a b | inl (inl 0<a+b) with totality 0R a
triangleInequality a b | inl (inl 0<a+b) | inl (inl 0<a) with totality 0R b
triangleInequality a b | inl (inl 0<a+b) | inl (inl 0<a) | inl (inl 0<b) = inr (Equivalence.reflexive eq)
triangleInequality a b | inl (inl 0<a+b) | inl (inl 0<a) | inl (inr b<0) = inl (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder b<0 (lemm2 b b<0)) a))
triangleInequality a b | inl (inl 0<a+b) | inl (inl 0<a) | inr 0=b = inr (Equivalence.reflexive eq)
triangleInequality a b | inl (inl 0<a+b) | inl (inr a<0) with totality 0R b
triangleInequality a b | inl (inl 0<a+b) | inl (inr a<0) | inl (inl 0<b) = inl (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder a<0 (lemm2 a a<0)) b)
triangleInequality a b | inl (inl 0<a+b) | inl (inr a<0) | inl (inr b<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<a+b (<WellDefined (Equivalence.reflexive eq) identLeft (ringAddInequalities a<0 b<0))))
triangleInequality a b | inl (inl 0<a+b) | inl (inr a<0) | inr 0=b = inl (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder a<0 (lemm2 a a<0)) b)
triangleInequality a b | inl (inl 0<a+b) | inr 0=a with totality 0R b
triangleInequality a b | inl (inl 0<a+b) | inr 0=a | inl (inl 0<b) = inr (Equivalence.reflexive eq)
triangleInequality a b | inl (inl 0<a+b) | inr 0=a | inl (inr b<0) = inl (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder b<0 (lemm2 b b<0)) a))
triangleInequality a b | inl (inl 0<a+b) | inr 0=a | inr 0=b = inr (Equivalence.reflexive eq)
triangleInequality a b | inl (inr a+b<0) with totality 0G a
triangleInequality a b | inl (inr a+b<0) | inl (inl 0<a) with totality 0G b
triangleInequality a b | inl (inr a+b<0) | inl (inl 0<a) | inl (inl 0<b) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft (Equivalence.reflexive eq) (ringAddInequalities 0<a 0<b)) a+b<0))
triangleInequality a b | inl (inr a+b<0) | inl (inl 0<a) | inl (inr b<0) = inl (<WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq (invContravariant additiveGroup)) (inverseWellDefined additiveGroup groupIsAbelian)) (Equivalence.reflexive eq) (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder (lemm2' _ 0<a) 0<a) (inverse b)))
triangleInequality a b | inl (inr a+b<0) | inl (inl 0<a) | inr 0=b = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<a (<WellDefined (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) identRight) (Equivalence.reflexive eq) a+b<0)))
triangleInequality a b | inl (inr a+b<0) | inl (inr a<0) with totality 0G b
triangleInequality a b | inl (inr a+b<0) | inl (inr a<0) | inl (inl 0<b) = inl (<WellDefined (Equivalence.symmetric eq (invContravariant additiveGroup)) groupIsAbelian (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder (lemm2' _ 0<b) 0<b) (inverse a)))
triangleInequality a b | inl (inr a+b<0) | inl (inr a<0) | inl (inr b<0) = inr (Equivalence.transitive eq (invContravariant additiveGroup) groupIsAbelian)
triangleInequality a b | inl (inr a+b<0) | inl (inr a<0) | inr 0=b = inr (Equivalence.transitive eq (invContravariant additiveGroup) (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (+WellDefined (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=b)) (invIdent additiveGroup)) (Equivalence.reflexive eq)) identLeft) (Equivalence.symmetric eq identRight)) (+WellDefined (Equivalence.reflexive eq) 0=b)))
triangleInequality a b | inl (inr a+b<0) | inr 0=a with totality 0G b
triangleInequality a b | inl (inr a+b<0) | inr 0=a | inl (inl 0<b) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<b (<WellDefined (Equivalence.transitive eq (+WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) identLeft) (Equivalence.reflexive eq) a+b<0)))
triangleInequality a b | inl (inr a+b<0) | inr 0=a | inl (inr b<0) = inr (Equivalence.transitive eq (invContravariant additiveGroup) (Equivalence.transitive eq groupIsAbelian (+WellDefined (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq (inverseWellDefined additiveGroup 0=a)) (invIdent additiveGroup)) 0=a) (Equivalence.reflexive eq))))
triangleInequality a b | inl (inr a+b<0) | inr 0=a | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq (+WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.symmetric eq 0=b)) identLeft) (Equivalence.reflexive eq) a+b<0))
triangleInequality a b | inr 0=a+b with totality 0G a
triangleInequality a b | inr 0=a+b | inl (inl 0<a) with totality 0G b
triangleInequality a b | inr 0=a+b | inl (inl 0<a) | inl (inl 0<b) = exFalso (irreflexive {0G} (<WellDefined identLeft (Equivalence.symmetric eq 0=a+b) (ringAddInequalities 0<a 0<b)))
triangleInequality a b | inr 0=a+b | inl (inl 0<a) | inl (inr b<0) = inl (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder b<0 (lemm2 _ b<0)) a))
triangleInequality a b | inr 0=a+b | inl (inl 0<a) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (lemm3 _ _ (Equivalence.transitive eq 0=a+b groupIsAbelian) 0=b)) 0<a))
triangleInequality a b | inr 0=a+b | inl (inr a<0) with totality 0G b
triangleInequality a b | inr 0=a+b | inl (inr a<0) | inl (inl 0<b) = inl (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder a<0 (lemm2 _ a<0)) b)
triangleInequality a b | inr 0=a+b | inl (inr a<0) | inl (inr b<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq 0=a+b) identLeft (ringAddInequalities a<0 b<0)))
triangleInequality a b | inr 0=a+b | inl (inr a<0) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (lemm3 _ _ (Equivalence.transitive eq 0=a+b groupIsAbelian) 0=b)) (Equivalence.reflexive eq) a<0))
triangleInequality a b | inr 0=a+b | inr 0=a with totality 0G b
triangleInequality a b | inr 0=a+b | inr 0=a | inl (inl 0<b) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (lemm3 a b 0=a+b 0=a)) 0<b))
triangleInequality a b | inr 0=a+b | inr 0=a | inl (inr b<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (lemm3 a b 0=a+b 0=a)) (Equivalence.reflexive eq) b<0))
triangleInequality a b | inr 0=a+b | inr 0=a | inr 0=b = inr (Equivalence.reflexive eq)
absZero : abs (Ring.0R R) Ring.0R R
absZero with totality (Ring.0R R) (Ring.0R R)
absZero | inl (inl x) = exFalso (irreflexive x)
absZero | inl (inr x) = exFalso (irreflexive x)
absZero | inr x = refl
absNegation : (a : A) (abs a) (abs (inverse a))
absNegation a with totality 0R a
absNegation a | inl (inl 0<a) with totality 0G (inverse a)
absNegation a | inl (inl 0<a) | inl (inl 0<-a) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<-a (lemm2' a 0<a)))
absNegation a | inl (inl 0<a) | inl (inr -a<0) = Equivalence.symmetric eq (invTwice additiveGroup a)
absNegation a | inl (inl 0<a) | inr 0=-a = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq (invTwice additiveGroup a)) (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=-a))) (invIdent additiveGroup)) 0<a))
absNegation a | inl (inr a<0) with totality 0G (inverse a)
absNegation a | inl (inr a<0) | inl (inl 0<-a) = Equivalence.reflexive eq
absNegation a | inl (inr a<0) | inl (inr -a<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (<WellDefined (Equivalence.reflexive eq) (invTwice additiveGroup a) (lemm2 (inverse a) -a<0)) a<0))
absNegation a | inl (inr a<0) | inr 0=-a = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq (Equivalence.transitive eq (inverseWellDefined additiveGroup 0=-a) (invTwice additiveGroup a))) (invIdent additiveGroup)) (Equivalence.reflexive eq) a<0))
absNegation a | inr 0=a with totality 0G (inverse a)
absNegation a | inr 0=a | inl (inl 0<-a) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=a)) (invIdent additiveGroup)) 0<-a))
absNegation a | inr 0=a | inl (inr -a<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=a)) (invIdent additiveGroup)) (Equivalence.reflexive eq) -a<0))
absNegation a | inr 0=a | inr 0=-a = Equivalence.transitive eq (Equivalence.symmetric eq 0=a) 0=-a
absRespectsTimes : (a b : A) abs (a * b) (abs a) * (abs b)
absRespectsTimes a b with totality 0R a
absRespectsTimes a b | inl (inl 0<a) with totality 0R b
absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) with totality 0R (a * b)
absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) | inl (inl 0<ab) = Equivalence.reflexive eq
absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) | inl (inr ab<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (orderRespectsMultiplication 0<a 0<b) ab<0))
absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) | inr 0=ab = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=ab) (orderRespectsMultiplication 0<a 0<b)))
absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) with totality 0R (a * b)
absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) | inl (inl 0<ab) with <WellDefined (Equivalence.reflexive eq) ringMinusExtracts (orderRespectsMultiplication 0<a (lemm2 b b<0))
... | bl = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<ab (<WellDefined (invTwice additiveGroup _) (Equivalence.reflexive eq) (lemm2' _ bl))))
absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) | inl (inr ab<0) = Equivalence.symmetric eq ringMinusExtracts
absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) | inr 0=ab = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq 0=ab) (Equivalence.reflexive eq) (posTimesNeg a b 0<a b<0)))
absRespectsTimes a b | inl (inl 0<a) | inr 0=b with totality 0R (a * b)
absRespectsTimes a b | inl (inl 0<a) | inr 0=b | inl (inl 0<ab) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (timesZero {a})) 0<ab))
absRespectsTimes a b | inl (inl 0<a) | inr 0=b | inl (inr ab<0) = exFalso ((irreflexive {0G} (<WellDefined (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (timesZero {a})) (Equivalence.reflexive eq) ab<0)))
absRespectsTimes a b | inl (inl 0<a) | inr 0=b | inr 0=ab = Equivalence.reflexive eq
absRespectsTimes a b | inl (inr a<0) with totality 0R b
absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) with totality 0R (a * b)
absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) | inl (inl 0<ab) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<ab (<WellDefined *Commutative (Equivalence.reflexive eq) (posTimesNeg b a 0<b a<0))))
absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) | inl (inr ab<0) = Equivalence.symmetric eq ringMinusExtracts'
absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) | inr 0=ab = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq 0=ab *Commutative)) (Equivalence.reflexive eq) (posTimesNeg b a 0<b a<0)))
absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) with totality 0R (a * b)
absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) | inl (inl 0<ab) = Equivalence.symmetric eq twoNegativesTimes
absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) | inl (inr ab<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (negTimesPos a b a<0 b<0) ab<0))
absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) | inr 0=ab = exFalso (exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=ab) (negTimesPos a b a<0 b<0))))
absRespectsTimes a b | inl (inr a<0) | inr 0=b with totality 0R (a * b)
absRespectsTimes a b | inl (inr a<0) | inr 0=b | inl (inl 0<ab) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (timesZero {a})) 0<ab))
absRespectsTimes a b | inl (inr a<0) | inr 0=b | inl (inr ab<0) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) timesZero) (Equivalence.reflexive eq) ab<0))
absRespectsTimes a b | inl (inr a<0) | inr 0=b | inr 0=ab = Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (Equivalence.transitive eq (Equivalence.transitive eq timesZero (Equivalence.symmetric eq timesZero)) (*WellDefined (Equivalence.reflexive eq) 0=b))
absRespectsTimes a b | inr 0=a with totality 0R b
absRespectsTimes a b | inr 0=a | inl (inl 0<b) with totality 0R (a * b)
absRespectsTimes a b | inr 0=a | inl (inl 0<b) | inl (inl 0<ab) = Equivalence.reflexive eq
absRespectsTimes a b | inr 0=a | inl (inl 0<b) | inl (inr ab<0) = Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) (Equivalence.transitive eq *Commutative timesZero))) (invIdent additiveGroup)) (Equivalence.transitive eq (Equivalence.symmetric eq timesZero) *Commutative)) (*WellDefined 0=a (Equivalence.reflexive eq))
absRespectsTimes a b | inr 0=a | inl (inl 0<b) | inr 0=ab = Equivalence.reflexive eq
absRespectsTimes a b | inr 0=a | inl (inr b<0) with totality 0R (a * b)
absRespectsTimes a b | inr 0=a | inl (inr b<0) | inl (inl 0<ab) = Equivalence.transitive eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) *Commutative) (Equivalence.transitive eq timesZero (Equivalence.transitive eq (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative timesZero)) (*WellDefined 0=a (Equivalence.reflexive eq))))
absRespectsTimes a b | inr 0=a | inl (inr b<0) | inl (inr ab<0) = Equivalence.symmetric eq ringMinusExtracts
absRespectsTimes a b | inr 0=a | inl (inr b<0) | inr 0=ab = Equivalence.transitive eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) *Commutative) (Equivalence.transitive eq timesZero (Equivalence.transitive eq (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative timesZero)) (*WellDefined 0=a (Equivalence.reflexive eq))))
absRespectsTimes a b | inr 0=a | inr 0=b with totality 0R (a * b)
absRespectsTimes a b | inr 0=a | inr 0=b | inl (inl 0<ab) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) timesZero) 0<ab))
absRespectsTimes a b | inr 0=a | inr 0=b | inl (inr ab<0) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) timesZero) (Equivalence.reflexive eq) ab<0))
absRespectsTimes a b | inr 0=a | inr 0=b | inr 0=ab = Equivalence.reflexive eq
absNonnegative : {a : A} (abs a < 0R) False
absNonnegative {a} pr with totality 0R a
absNonnegative {a} pr | inl (inl x) = irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder x pr)
absNonnegative {a} pr | inl (inr x) = irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (<WellDefined (Equivalence.reflexive eq) (invTwice additiveGroup a) (lemm2 (inverse a) pr)) x)
absNonnegative {a} pr | inr x = irreflexive {0G} (<WellDefined (Equivalence.symmetric eq x) (Equivalence.reflexive eq) pr)
absZeroImpliesZero : {a : A} abs a 0R a 0R
absZeroImpliesZero {a} a=0 with totality 0R a
absZeroImpliesZero {a} a=0 | inl (inl 0<a) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) a=0 0<a))
absZeroImpliesZero {a} a=0 | inl (inr a<0) = Equivalence.symmetric eq (lemm3 (inverse a) a (Equivalence.symmetric eq invLeft) (Equivalence.symmetric eq a=0))
absZeroImpliesZero {a} a=0 | inr 0=a = a=0
addingAbsCannotShrink : {a b : A} 0G < b 0G < ((abs a) + b)
addingAbsCannotShrink {a} {b} 0<b with totality 0G a
addingAbsCannotShrink {a} {b} 0<b | inl (inl x) = <WellDefined identLeft (Equivalence.reflexive eq) (ringAddInequalities x 0<b)
addingAbsCannotShrink {a} {b} 0<b | inl (inr x) = <WellDefined identLeft (Equivalence.reflexive eq) (ringAddInequalities (lemm2 a x) 0<b)
addingAbsCannotShrink {a} {b} 0<b | inr x = <WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.symmetric eq identLeft) (+WellDefined x (Equivalence.reflexive eq))) 0<b
greaterZeroImpliesEqualAbs : {a : A} 0R < a a abs a
greaterZeroImpliesEqualAbs {a} 0<a with totality 0R a
... | inl (inl _) = Equivalence.reflexive eq
... | inl (inr a<0) = exFalso (irreflexive (SetoidPartialOrder.<Transitive pOrder a<0 0<a))
... | inr 0=a = exFalso (irreflexive (<WellDefined 0=a (Equivalence.reflexive eq) 0<a))
lessZeroImpliesEqualNegAbs : {a : A} a < 0R abs a inverse a
lessZeroImpliesEqualNegAbs {a} a<0 with totality 0R a
... | inl (inr _) = Equivalence.reflexive eq
... | inl (inl 0<a) = exFalso (irreflexive (SetoidPartialOrder.<Transitive pOrder a<0 0<a))
... | inr 0=a = exFalso (irreflexive (<WellDefined (Equivalence.reflexive eq) 0=a a<0))
absZeroIsZero : abs 0R 0R
absZeroIsZero with totality 0R 0R
... | inl (inl bad) = exFalso (irreflexive bad)
... | inl (inr bad) = exFalso (irreflexive bad)
... | inr _ = Equivalence.reflexive eq
greaterThanAbsImpliesGreaterThan0 : {a b : A} (abs a) < b 0R < b
greaterThanAbsImpliesGreaterThan0 {a} {b} a<b with totality 0R a
greaterThanAbsImpliesGreaterThan0 {a} {b} a<b | inl (inl 0<a) = SetoidPartialOrder.<Transitive pOrder 0<a a<b
greaterThanAbsImpliesGreaterThan0 {a} {b} a<b | inl (inr a<0) = SetoidPartialOrder.<Transitive pOrder (lemm2 _ a<0) a<b
greaterThanAbsImpliesGreaterThan0 {a} {b} a<b | inr 0=a = <WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq) a<b
abs1Is1 : abs 1R 1R
abs1Is1 with totality 0R 1R
abs1Is1 | inl (inl 0<1) = Equivalence.reflexive eq
abs1Is1 | inl (inr 1<0) = exFalso (1<0False 1<0)
abs1Is1 | inr 0=1 = Equivalence.reflexive eq
absBoundedImpliesBounded : {a b : A} abs a < b a < b
absBoundedImpliesBounded {a} {b} a<b with totality 0G a
absBoundedImpliesBounded {a} {b} a<b | inl (inl x) = a<b
absBoundedImpliesBounded {a} {b} a<b | inl (inr x) = SetoidPartialOrder.<Transitive pOrder x (SetoidPartialOrder.<Transitive pOrder (lemm2 a x) a<b)
absBoundedImpliesBounded {a} {b} a<b | inr x = a<b
a-bPos : {a b : A} ((a b) False) 0R < abs (a + inverse b)
a-bPos {a} {b} a!=b with totality 0R (a + inverse b)
a-bPos {a} {b} a!=b | inl (inl x) = x
a-bPos {a} {b} a!=b | inl (inr x) = lemm2 _ x
a-bPos {a} {b} a!=b | inr x = exFalso (a!=b (transferToRight additiveGroup (Equivalence.symmetric eq x)))

View File

@@ -4,7 +4,8 @@ open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Groups.Lemmas
open import Groups.Definition
open import Setoids.Orders
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
@@ -48,21 +49,21 @@ FloorIs.prAbove (addOneToFloor record { prBelow = x ; prAbove = prAbove }) = <We
private
0<n : {x y : A} (x < y) 0R < fromN n
0<n x<y = fromNPreservesOrder (anyComparisonImpliesNontrivial x<y) (lessTransitive (succIsPositive 0) 1<n)
0<n x<y = fromNPreservesOrder (0<1 (anyComparisonImpliesNontrivial x<y)) (lessTransitive (succIsPositive 0) 1<n)
0<aFromN : {a : A} (0<a : 0R < a) 0R < (a * fromN n)
0<aFromN 0<a = orderRespectsMultiplication 0<a (0<n 0<a)
floorWellDefinedLemma : {a : A} {n1 n2 : } FloorIs a n1 FloorIs a n2 n1 <N n2 False
floorWellDefinedLemma {a} {n1} {n2} record { prAbove = prAbove1 } record { prBelow = inl prBelow } n1<n2 with TotalOrder.totality TotalOrder (succ n1) n2
... | inl (inl n1+1<n2) = irreflexive (<Transitive prAbove1 (<Transitive (fromNPreservesOrder (anyComparisonImpliesNontrivial prBelow) n1+1<n2) prBelow))
... | inl (inl n1+1<n2) = irreflexive (<Transitive prAbove1 (<Transitive (fromNPreservesOrder (0<1 (anyComparisonImpliesNontrivial prBelow)) n1+1<n2) prBelow))
... | inl (inr n2<n1+1) = noIntegersBetweenXAndSuccX n1 n1<n2 n2<n1+1
... | inr refl = irreflexive (<Transitive prAbove1 prBelow)
floorWellDefinedLemma {a} {n1} {n2} record { prBelow = (inl x) ; prAbove = prAbove1 } record { prBelow = (inr eq) ; prAbove = _ } n1<n2 with TotalOrder.totality TotalOrder (succ n1) n2
... | inl (inl n1+1<n2) = irreflexive (<Transitive prAbove1 (<WellDefined reflexive eq (fromNPreservesOrder (anyComparisonImpliesNontrivial prAbove1) n1+1<n2)))
... | inl (inl n1+1<n2) = irreflexive (<Transitive prAbove1 (<WellDefined reflexive eq (fromNPreservesOrder (0<1 (anyComparisonImpliesNontrivial prAbove1)) n1+1<n2)))
... | inl (inr n2<n1+1) = noIntegersBetweenXAndSuccX n1 n1<n2 n2<n1+1
... | inr refl = irreflexive (<WellDefined reflexive eq prAbove1)
floorWellDefinedLemma {a} {n1} {n2} record { prBelow = (inr x) ; prAbove = prAbove1 } record { prBelow = (inr eq) ; prAbove = _ } n1<n2 = lessIrreflexive {n1} (fromNPreservesOrder' (anyComparisonImpliesNontrivial prAbove1) (<WellDefined reflexive (transitive eq (symmetric x)) (fromNPreservesOrder (anyComparisonImpliesNontrivial prAbove1) n1<n2)))
floorWellDefinedLemma {a} {n1} {n2} record { prBelow = (inr x) ; prAbove = prAbove1 } record { prBelow = (inr eq) ; prAbove = _ } n1<n2 = lessIrreflexive {n1} (fromNPreservesOrder' (anyComparisonImpliesNontrivial prAbove1) (<WellDefined reflexive (transitive eq (symmetric x)) (fromNPreservesOrder (0<1 (anyComparisonImpliesNontrivial prAbove1)) n1<n2)))
floorWellDefined : {a : A} {n1 n2 : } FloorIs a n1 FloorIs a n2 n1 n2
floorWellDefined {a} {n1} {n2} record { prBelow = prBelow1 ; prAbove = prAbove1 } record { prBelow = prBelow ; prAbove = prAbove } with TotalOrder.totality TotalOrder n1 n2
@@ -80,7 +81,7 @@ private
computeFloor' {zero} (succ k) pr a 0<a a<f = exFalso (irreflexive (<Transitive 0<a a<f))
computeFloor' {succ k} n pr a 0<a a<f with totality 1R a
... | inl (inr a<1) = 0 , (record { prAbove = <WellDefined reflexive (symmetric identRight) a<1 ; prBelow = inl 0<a })
... | inr 1=a = 1 , (record { prAbove = <WellDefined (transitive identRight 1=a) reflexive (fromNPreservesOrder (anyComparisonImpliesNontrivial 0<a) {1} (le 0 refl)) ; prBelow = inr (transitive identRight 1=a) })
... | inr 1=a = 1 , (record { prAbove = <WellDefined (transitive identRight 1=a) reflexive (fromNPreservesOrder (0<1 (anyComparisonImpliesNontrivial 0<a)) {1} (le 0 refl)) ; prBelow = inr (transitive identRight 1=a) })
... | inl (inl 1<a) with computeFloor' {k} (succ n) (transitivity (transitivity (Semiring.commutative Semiring k (succ n)) (applyEquality succ (Semiring.commutative Semiring n k))) pr) (a + inverse 1R) (moveInequality 1<a) (<WellDefined reflexive (transitive groupIsAbelian (transitive +Associative (transitive (+WellDefined invLeft reflexive) identLeft))) (orderRespectsAddition a<f (inverse 1R)))
... | N , snd = succ N , floorWellDefined' (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)) (addOneToFloor snd)
@@ -179,7 +180,7 @@ approximationComesFromBelow 1/n 1/nPr a 0<a a<1 (succ m) with computeFloor' 0 (S
... | x , record { prBelow = inr x=an ; prAbove = an<x+1 } = inr (transitive (partialSums'Translate 0G _ _ m) (transitive (+WellDefined (transitive (*WellDefined x=an reflexive) (transitive (symmetric *Associative) (*WellDefined reflexive (transitive *Commutative 1/nPr)))) reflexive) (transitive (+WellDefined (transitive *Commutative identIsIdent) (transitive (partialSums'WellDefined' 0G _ (constSequence 0G) (λ m transitive (multiplyZeroSequence (powerSeq 1/n (1/n * 1/n)) m) (identityOfIndiscernablesRight __ reflexive (equalityCommutative (indexAndConst 0G m)))) m) (transitive (partialSumsConst _ _ m) (transitive identLeft timesZero')))) identRight)))
... | x , record { prBelow = inl x<an ; prAbove = an<x+1 } with approximationComesFromBelow 1/n 1/nPr ((a * fromN n) + inverse (fromN x)) (moveInequality x<an) (<WellDefined reflexive (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invRight) identRight)) (orderRespectsAddition an<x+1 (inverse (fromN x)))) m
... | inl inter<an = inl (<WellDefined (symmetric (partialSums'Translate 0G (fromN x * 1/n) _ m)) reflexive (<WellDefined (+WellDefined reflexive (symmetric (partialSums'WellDefined 0G (fromN n * 0G) (symmetric timesZero) _ m))) reflexive (ringCanCancelPositive (0<n an<x+1) (<WellDefined (symmetric (transitive *DistributesOver+' (+WellDefined (transitive (symmetric *Associative) (transitive (*WellDefined reflexive 1/nPr) (transitive *Commutative identIsIdent))) (transitive *Commutative (transitive (lemma2 (fromN n) (fromN n * 0G) 1/n (1/n * 1/n) _ m) (transitive (partialSums'WellDefined _ 0G (transitive (*WellDefined reflexive timesZero) timesZero) _ m) (partialSums'WellDefined' 0G _ _ (λ m applyWellDefined _ _ _ dot (λ {x} {y} {s} dotWellDefined {x} {y} {s}) (λ m powerSeqWellDefined {_} {1/n} {_} {1/n} reflexive (transitive (symmetric *Associative) (transitive (transitive *Commutative (*WellDefined 1/nPr reflexive)) identIsIdent)) m) m) m))))))) reflexive (<WellDefined groupIsAbelian (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)) (orderRespectsAddition inter<an (fromN x)))))))
... | inr inter=an = inr (transitive (partialSums'Translate 0G (fromN x * 1/n) _ m) (cancelIntDom' (isIntDom λ t anyComparisonImpliesNontrivial a<1 (symmetric t)) ans λ t irreflexive (<WellDefined reflexive t (fromNPreservesOrder (anyComparisonImpliesNontrivial a<1) (lessTransitive (succIsPositive 0) 1<n)))))
... | inr inter=an = inr (transitive (partialSums'Translate 0G (fromN x * 1/n) _ m) (cancelIntDom' (isIntDom λ t anyComparisonImpliesNontrivial a<1 (symmetric t)) ans λ t irreflexive (<WellDefined reflexive t (fromNPreservesOrder (0<1 (anyComparisonImpliesNontrivial a<1)) (lessTransitive (succIsPositive 0) 1<n)))))
where
ans : (((fromN x * 1/n) + index (partialSums' 0G (apply dot (powerSeq 1/n (1/n * 1/n)) (baseNExpansion ((a * fromN n) + inverse (fromN x)) (moveInequality x<an) (<WellDefined reflexive (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invRight) identRight)) (orderRespectsAddition an<x+1 (inverse (fromN x))))))) m) * fromN n) a * fromN n
ans = transitive (transitive *DistributesOver+' (+WellDefined (transitive (symmetric *Associative) (transitive (*WellDefined reflexive 1/nPr) (transitive *Commutative identIsIdent))) *Commutative)) (transitive (+WellDefined reflexive (transitive (lemma2 (fromN n) 0G 1/n (1/n * 1/n) _ m) (transitive (partialSums'WellDefined _ _ timesZero _ m) (partialSums'WellDefined' _ _ _ (λ m applyWellDefined _ _ _ dot (λ {x} {y} {s} dotWellDefined {x} {y} {s}) (λ m powerSeqWellDefined reflexive (transitive (symmetric *Associative) (transitive (*WellDefined reflexive 1/nPr) (transitive *Commutative identIsIdent))) m) m) m)))) (transitive (+WellDefined reflexive inter=an) (transitive groupIsAbelian (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)))))
@@ -194,7 +195,7 @@ powPos (succ m) 0<a = orderRespectsMultiplication 0<a (powPos m 0<a)
approximationIsNear : (1/n : A) (1/nPr : 1/n * (fromN n) 1R) (a : A) (0<a : 0R < a) (a<1 : a < 1R) (m : ) a < ((index (approximations 1/n 1/nPr (baseNExpansion a 0<a a<1)) m) + pow m 1/n)
approximationIsNear 1/n 1/npr a 0<a a<1 zero with computeFloor' 0 (Semiring.sumZeroRight Semiring n) (a * fromN n) (0<aFromN 0<a) (<WellDefined reflexive identIsIdent (ringCanMultiplyByPositive (0<n 0<a) a<1))
... | x , record { prBelow = inl prBelow ; prAbove = prAbove } = <WellDefined reflexive (transitive (symmetric identLeft) +Associative) (ringCanCancelPositive (0<n prAbove) (<Transitive prAbove (<WellDefined reflexive (transitive (+WellDefined (transitive (*WellDefined reflexive (symmetric 1/npr)) *Associative) (symmetric identIsIdent)) (symmetric *DistributesOver+')) (<WellDefined reflexive (transitive groupIsAbelian (+WellDefined (transitive (symmetric identIsIdent) *Commutative) reflexive)) (orderRespectsAddition (<WellDefined identRight reflexive (fromNPreservesOrder (anyComparisonImpliesNontrivial prAbove) 1<n)) (fromN x))))))
... | x , record { prBelow = inl prBelow ; prAbove = prAbove } = <WellDefined reflexive (transitive (symmetric identLeft) +Associative) (ringCanCancelPositive (0<n prAbove) (<Transitive prAbove (<WellDefined reflexive (transitive (+WellDefined (transitive (*WellDefined reflexive (symmetric 1/npr)) *Associative) (symmetric identIsIdent)) (symmetric *DistributesOver+')) (<WellDefined reflexive (transitive groupIsAbelian (+WellDefined (transitive (symmetric identIsIdent) *Commutative) reflexive)) (orderRespectsAddition (<WellDefined identRight reflexive (fromNPreservesOrder (0<1 (anyComparisonImpliesNontrivial prAbove)) 1<n)) (fromN x))))))
... | x , record { prBelow = inr prBelow ; prAbove = prAbove } = <WellDefined reflexive (symmetric (transitive (symmetric +Associative) identLeft)) (ringCanCancelPositive (0<n prAbove) (<WellDefined prBelow (symmetric (transitive *DistributesOver+' (+WellDefined (transitive (symmetric *Associative) (transitive *Commutative (transitive (*WellDefined 1/npr reflexive) identIsIdent))) identIsIdent))) (<WellDefined identLeft groupIsAbelian (orderRespectsAddition (0<n prAbove) (fromN x)))))
approximationIsNear 1/n 1/npr a 0<a a<1 (succ m) with computeFloor' 0 (Semiring.sumZeroRight Semiring n) (a * fromN n) (0<aFromN 0<a) (<WellDefined reflexive identIsIdent (ringCanMultiplyByPositive (0<n 0<a) a<1))
... | x , record { prBelow = inl prBelow ; prAbove = prAbove } = <WellDefined reflexive (+WellDefined (symmetric (partialSums'Translate 0G (fromN x * 1/n) _ m)) reflexive) (ringCanCancelPositive (0<n prAbove) (<WellDefined reflexive (transitive (+WellDefined (transitive (+WellDefined (transitive (transitive (symmetric identIsIdent) (transitive *Commutative (*WellDefined reflexive (symmetric 1/npr))) ) *Associative) *Commutative) (symmetric *DistributesOver+')) (transitive (transitive (transitive (symmetric identIsIdent) (*WellDefined (transitive (symmetric 1/npr) *Commutative) reflexive)) (symmetric *Associative)) *Commutative)) (symmetric *DistributesOver+')) (<WellDefined reflexive (+WellDefined (+WellDefined reflexive (transitive (partialSums'WellDefined' _ _ _ (λ m applyWellDefined _ _ _ dot (λ {_} {_} {s} dotWellDefined {_} {_} {s}) (λ m powerSeqWellDefined reflexive (transitive (transitive (transitive (symmetric identIsIdent) *Commutative) (*WellDefined reflexive (symmetric 1/npr))) *Associative) m) m) m) (symmetric (lemma2 (fromN n) 0G 1/n (1/n * 1/n) _ m)))) reflexive) (<WellDefined reflexive (+WellDefined (+WellDefined reflexive (partialSums'WellDefined _ _ (symmetric timesZero) _ m)) reflexive) (<WellDefined reflexive +Associative u)))))

View File

@@ -8,7 +8,8 @@ open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Sets.EquivalenceRelations
open import Sequences
open import Setoids.Orders
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Functions
open import LogicalFormulae
open import Numbers.Naturals.Semiring

View File

@@ -5,10 +5,9 @@ open import Setoids.Setoids
open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Groups.Definition
open import Sets.EquivalenceRelations
open import Sequences
open import Setoids.Orders
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Functions
open import LogicalFormulae
open import Numbers.Naturals.Semiring
@@ -16,15 +15,8 @@ open import Numbers.Naturals.Order
module Rings.Orders.Total.Cauchy {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {_*_ : A A A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) where
open Setoid S
open SetoidTotalOrder (TotallyOrderedRing.total order)
open SetoidPartialOrder pOrder
open Equivalence eq
open TotallyOrderedRing order
open Ring R
open Group additiveGroup
open import Rings.Orders.Total.Lemmas order
open import Rings.Orders.Total.AbsoluteValue order
cauchy : Sequence A Set (m o)
cauchy s = (ε : A) (0R < ε) Sg (λ N {m n : } (N <N m) (N <N n) abs ((index s m) -R (index s n)) < ε)
cauchy s = (ε : A) (Ring.0R R < ε) Sg (λ N {m n : } (N <N m) (N <N n) abs (Ring._-R_ R (index s m) (index s n)) < ε)

View File

@@ -1,7 +1,8 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Definition
open import Setoids.Orders
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Setoids.Setoids
open import Functions
open import Rings.Definition

View File

@@ -3,7 +3,8 @@
open import LogicalFormulae
open import Groups.Lemmas
open import Groups.Definition
open import Setoids.Orders
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
@@ -27,27 +28,7 @@ open PartiallyOrderedRing pOrderRing
open import Rings.Lemmas R
open import Rings.Orders.Partial.Lemmas pOrderRing
abs : A A
abs a with totality 0R a
abs a | inl (inl 0<a) = a
abs a | inl (inr a<0) = inverse a
abs a | inr 0=a = a
abstract
absWellDefined : (a b : A) a b abs a abs b
absWellDefined a b a=b with totality 0R a
absWellDefined a b a=b | inl (inl 0<a) with totality 0R b
absWellDefined a b a=b | inl (inl 0<a) | inl (inl 0<b) = a=b
absWellDefined a b a=b | inl (inl 0<a) | inl (inr b<0) = exFalso (irreflexive {0G} (<Transitive 0<a (<WellDefined (Equivalence.symmetric eq a=b) (Equivalence.reflexive eq) b<0)))
absWellDefined a b a=b | inl (inl 0<a) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq a=b (Equivalence.symmetric eq 0=b)) 0<a))
absWellDefined a b a=b | inl (inr a<0) with totality 0R b
absWellDefined a b a=b | inl (inr a<0) | inl (inl 0<b) = exFalso (irreflexive {0G} (<Transitive 0<b (<WellDefined a=b (Equivalence.reflexive eq) a<0)))
absWellDefined a b a=b | inl (inr a<0) | inl (inr b<0) = inverseWellDefined additiveGroup a=b
absWellDefined a b a=b | inl (inr a<0) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq a=b (Equivalence.symmetric eq 0=b)) (Equivalence.reflexive eq) a<0))
absWellDefined a b a=b | inr 0=a with totality 0R b
absWellDefined a b a=b | inr 0=a | inl (inl 0<b) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (Equivalence.transitive eq 0=a a=b)) 0<b))
absWellDefined a b a=b | inr 0=a | inl (inr b<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq 0=a a=b)) (Equivalence.reflexive eq) b<0))
absWellDefined a b a=b | inr 0=a | inr 0=b = a=b
lemm2 : (a : A) a < 0G 0G < inverse a
lemm2 a a<0 with totality 0R (inverse a)
@@ -67,48 +48,6 @@ abstract
t : a + 0G 0G
t = Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) 0=-a) (invRight {a})
triangleInequality : (a b : A) ((abs (a + b)) < ((abs a) + (abs b))) || (abs (a + b) (abs a) + (abs b))
triangleInequality a b with totality 0R (a + b)
triangleInequality a b | inl (inl 0<a+b) with totality 0R a
triangleInequality a b | inl (inl 0<a+b) | inl (inl 0<a) with totality 0R b
triangleInequality a b | inl (inl 0<a+b) | inl (inl 0<a) | inl (inl 0<b) = inr (Equivalence.reflexive eq)
triangleInequality a b | inl (inl 0<a+b) | inl (inl 0<a) | inl (inr b<0) = inl (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder b<0 (lemm2 b b<0)) a))
triangleInequality a b | inl (inl 0<a+b) | inl (inl 0<a) | inr 0=b = inr (Equivalence.reflexive eq)
triangleInequality a b | inl (inl 0<a+b) | inl (inr a<0) with totality 0R b
triangleInequality a b | inl (inl 0<a+b) | inl (inr a<0) | inl (inl 0<b) = inl (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder a<0 (lemm2 a a<0)) b)
triangleInequality a b | inl (inl 0<a+b) | inl (inr a<0) | inl (inr b<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<a+b (<WellDefined (Equivalence.reflexive eq) identLeft (ringAddInequalities a<0 b<0))))
triangleInequality a b | inl (inl 0<a+b) | inl (inr a<0) | inr 0=b = inl (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder a<0 (lemm2 a a<0)) b)
triangleInequality a b | inl (inl 0<a+b) | inr 0=a with totality 0R b
triangleInequality a b | inl (inl 0<a+b) | inr 0=a | inl (inl 0<b) = inr (Equivalence.reflexive eq)
triangleInequality a b | inl (inl 0<a+b) | inr 0=a | inl (inr b<0) = inl (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder b<0 (lemm2 b b<0)) a))
triangleInequality a b | inl (inl 0<a+b) | inr 0=a | inr 0=b = inr (Equivalence.reflexive eq)
triangleInequality a b | inl (inr a+b<0) with totality 0G a
triangleInequality a b | inl (inr a+b<0) | inl (inl 0<a) with totality 0G b
triangleInequality a b | inl (inr a+b<0) | inl (inl 0<a) | inl (inl 0<b) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft (Equivalence.reflexive eq) (ringAddInequalities 0<a 0<b)) a+b<0))
triangleInequality a b | inl (inr a+b<0) | inl (inl 0<a) | inl (inr b<0) = inl (<WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq (invContravariant additiveGroup)) (inverseWellDefined additiveGroup groupIsAbelian)) (Equivalence.reflexive eq) (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder (lemm2' _ 0<a) 0<a) (inverse b)))
triangleInequality a b | inl (inr a+b<0) | inl (inl 0<a) | inr 0=b = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<a (<WellDefined (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) identRight) (Equivalence.reflexive eq) a+b<0)))
triangleInequality a b | inl (inr a+b<0) | inl (inr a<0) with totality 0G b
triangleInequality a b | inl (inr a+b<0) | inl (inr a<0) | inl (inl 0<b) = inl (<WellDefined (Equivalence.symmetric eq (invContravariant additiveGroup)) groupIsAbelian (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder (lemm2' _ 0<b) 0<b) (inverse a)))
triangleInequality a b | inl (inr a+b<0) | inl (inr a<0) | inl (inr b<0) = inr (Equivalence.transitive eq (invContravariant additiveGroup) groupIsAbelian)
triangleInequality a b | inl (inr a+b<0) | inl (inr a<0) | inr 0=b = inr (Equivalence.transitive eq (invContravariant additiveGroup) (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (+WellDefined (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=b)) (invIdent additiveGroup)) (Equivalence.reflexive eq)) identLeft) (Equivalence.symmetric eq identRight)) (+WellDefined (Equivalence.reflexive eq) 0=b)))
triangleInequality a b | inl (inr a+b<0) | inr 0=a with totality 0G b
triangleInequality a b | inl (inr a+b<0) | inr 0=a | inl (inl 0<b) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<b (<WellDefined (Equivalence.transitive eq (+WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) identLeft) (Equivalence.reflexive eq) a+b<0)))
triangleInequality a b | inl (inr a+b<0) | inr 0=a | inl (inr b<0) = inr (Equivalence.transitive eq (invContravariant additiveGroup) (Equivalence.transitive eq groupIsAbelian (+WellDefined (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq (inverseWellDefined additiveGroup 0=a)) (invIdent additiveGroup)) 0=a) (Equivalence.reflexive eq))))
triangleInequality a b | inl (inr a+b<0) | inr 0=a | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq (+WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.symmetric eq 0=b)) identLeft) (Equivalence.reflexive eq) a+b<0))
triangleInequality a b | inr 0=a+b with totality 0G a
triangleInequality a b | inr 0=a+b | inl (inl 0<a) with totality 0G b
triangleInequality a b | inr 0=a+b | inl (inl 0<a) | inl (inl 0<b) = exFalso (irreflexive {0G} (<WellDefined identLeft (Equivalence.symmetric eq 0=a+b) (ringAddInequalities 0<a 0<b)))
triangleInequality a b | inr 0=a+b | inl (inl 0<a) | inl (inr b<0) = inl (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder b<0 (lemm2 _ b<0)) a))
triangleInequality a b | inr 0=a+b | inl (inl 0<a) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (lemm3 _ _ (Equivalence.transitive eq 0=a+b groupIsAbelian) 0=b)) 0<a))
triangleInequality a b | inr 0=a+b | inl (inr a<0) with totality 0G b
triangleInequality a b | inr 0=a+b | inl (inr a<0) | inl (inl 0<b) = inl (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder a<0 (lemm2 _ a<0)) b)
triangleInequality a b | inr 0=a+b | inl (inr a<0) | inl (inr b<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq 0=a+b) identLeft (ringAddInequalities a<0 b<0)))
triangleInequality a b | inr 0=a+b | inl (inr a<0) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (lemm3 _ _ (Equivalence.transitive eq 0=a+b groupIsAbelian) 0=b)) (Equivalence.reflexive eq) a<0))
triangleInequality a b | inr 0=a+b | inr 0=a with totality 0G b
triangleInequality a b | inr 0=a+b | inr 0=a | inl (inl 0<b) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (lemm3 a b 0=a+b 0=a)) 0<b))
triangleInequality a b | inr 0=a+b | inr 0=a | inl (inr b<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (lemm3 a b 0=a+b 0=a)) (Equivalence.reflexive eq) b<0))
triangleInequality a b | inr 0=a+b | inr 0=a | inr 0=b = inr (Equivalence.reflexive eq)
ringMinusFlipsOrder : {x : A} (Ring.0R R) < x (Group.inverse (Ring.additiveGroup R) x) < (Ring.0R R)
ringMinusFlipsOrder {x = x} 0<x with totality (Ring.0R R) (Group.inverse (Ring.additiveGroup R) x)
ringMinusFlipsOrder {x} 0<x | inl (inl 0<inv) = exFalso (SetoidPartialOrder.irreflexive pOrder bad')
@@ -200,27 +139,6 @@ abstract
r : y < x
r = SetoidPartialOrder.<WellDefined pOrder (Equivalence.transitive eq (symmetric (Group.+Associative additiveGroup)) (Equivalence.transitive eq (Group.+WellDefined additiveGroup reflexive (invLeft)) identRight)) (Group.identLeft additiveGroup) (orderRespectsAddition q x)
absZero : abs (Ring.0R R) Ring.0R R
absZero with totality (Ring.0R R) (Ring.0R R)
absZero | inl (inl x) = exFalso (irreflexive x)
absZero | inl (inr x) = exFalso (irreflexive x)
absZero | inr x = refl
absNegation : (a : A) (abs a) (abs (inverse a))
absNegation a with totality 0R a
absNegation a | inl (inl 0<a) with totality 0G (inverse a)
absNegation a | inl (inl 0<a) | inl (inl 0<-a) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<-a (lemm2' a 0<a)))
absNegation a | inl (inl 0<a) | inl (inr -a<0) = Equivalence.symmetric eq (invTwice additiveGroup a)
absNegation a | inl (inl 0<a) | inr 0=-a = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq (invTwice additiveGroup a)) (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=-a))) (invIdent additiveGroup)) 0<a))
absNegation a | inl (inr a<0) with totality 0G (inverse a)
absNegation a | inl (inr a<0) | inl (inl 0<-a) = Equivalence.reflexive eq
absNegation a | inl (inr a<0) | inl (inr -a<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (<WellDefined (Equivalence.reflexive eq) (invTwice additiveGroup a) (lemm2 (inverse a) -a<0)) a<0))
absNegation a | inl (inr a<0) | inr 0=-a = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq (Equivalence.transitive eq (inverseWellDefined additiveGroup 0=-a) (invTwice additiveGroup a))) (invIdent additiveGroup)) (Equivalence.reflexive eq) a<0))
absNegation a | inr 0=a with totality 0G (inverse a)
absNegation a | inr 0=a | inl (inl 0<-a) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=a)) (invIdent additiveGroup)) 0<-a))
absNegation a | inr 0=a | inl (inr -a<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=a)) (invIdent additiveGroup)) (Equivalence.reflexive eq) -a<0))
absNegation a | inr 0=a | inr 0=-a = Equivalence.transitive eq (Equivalence.symmetric eq 0=a) 0=-a
posTimesNeg : (a b : A) (0G < a) (b < 0G) (a * b) < 0G
posTimesNeg a b 0<a b<0 with orderRespectsMultiplication 0<a (lemm2 _ b<0)
... | bl = <WellDefined (invTwice additiveGroup _) (Equivalence.reflexive eq) (lemm2' _ (<WellDefined (Equivalence.reflexive eq) ringMinusExtracts bl))
@@ -229,67 +147,6 @@ abstract
negTimesPos a b a<0 b<0 with orderRespectsMultiplication (lemm2 _ a<0) (lemm2 _ b<0)
... | bl = <WellDefined (Equivalence.reflexive eq) twoNegativesTimes bl
absRespectsTimes : (a b : A) abs (a * b) (abs a) * (abs b)
absRespectsTimes a b with totality 0R a
absRespectsTimes a b | inl (inl 0<a) with totality 0R b
absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) with totality 0R (a * b)
absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) | inl (inl 0<ab) = Equivalence.reflexive eq
absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) | inl (inr ab<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (orderRespectsMultiplication 0<a 0<b) ab<0))
absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) | inr 0=ab = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=ab) (orderRespectsMultiplication 0<a 0<b)))
absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) with totality 0R (a * b)
absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) | inl (inl 0<ab) with <WellDefined (Equivalence.reflexive eq) ringMinusExtracts (orderRespectsMultiplication 0<a (lemm2 b b<0))
... | bl = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<ab (<WellDefined (invTwice additiveGroup _) (Equivalence.reflexive eq) (lemm2' _ bl))))
absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) | inl (inr ab<0) = Equivalence.symmetric eq ringMinusExtracts
absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) | inr 0=ab = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq 0=ab) (Equivalence.reflexive eq) (posTimesNeg a b 0<a b<0)))
absRespectsTimes a b | inl (inl 0<a) | inr 0=b with totality 0R (a * b)
absRespectsTimes a b | inl (inl 0<a) | inr 0=b | inl (inl 0<ab) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (timesZero {a})) 0<ab))
absRespectsTimes a b | inl (inl 0<a) | inr 0=b | inl (inr ab<0) = exFalso ((irreflexive {0G} (<WellDefined (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (timesZero {a})) (Equivalence.reflexive eq) ab<0)))
absRespectsTimes a b | inl (inl 0<a) | inr 0=b | inr 0=ab = Equivalence.reflexive eq
absRespectsTimes a b | inl (inr a<0) with totality 0R b
absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) with totality 0R (a * b)
absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) | inl (inl 0<ab) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<ab (<WellDefined *Commutative (Equivalence.reflexive eq) (posTimesNeg b a 0<b a<0))))
absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) | inl (inr ab<0) = Equivalence.symmetric eq ringMinusExtracts'
absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) | inr 0=ab = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq 0=ab *Commutative)) (Equivalence.reflexive eq) (posTimesNeg b a 0<b a<0)))
absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) with totality 0R (a * b)
absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) | inl (inl 0<ab) = Equivalence.symmetric eq twoNegativesTimes
absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) | inl (inr ab<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (negTimesPos a b a<0 b<0) ab<0))
absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) | inr 0=ab = exFalso (exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=ab) (negTimesPos a b a<0 b<0))))
absRespectsTimes a b | inl (inr a<0) | inr 0=b with totality 0R (a * b)
absRespectsTimes a b | inl (inr a<0) | inr 0=b | inl (inl 0<ab) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (timesZero {a})) 0<ab))
absRespectsTimes a b | inl (inr a<0) | inr 0=b | inl (inr ab<0) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) timesZero) (Equivalence.reflexive eq) ab<0))
absRespectsTimes a b | inl (inr a<0) | inr 0=b | inr 0=ab = Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (Equivalence.transitive eq (Equivalence.transitive eq timesZero (Equivalence.symmetric eq timesZero)) (*WellDefined (Equivalence.reflexive eq) 0=b))
absRespectsTimes a b | inr 0=a with totality 0R b
absRespectsTimes a b | inr 0=a | inl (inl 0<b) with totality 0R (a * b)
absRespectsTimes a b | inr 0=a | inl (inl 0<b) | inl (inl 0<ab) = Equivalence.reflexive eq
absRespectsTimes a b | inr 0=a | inl (inl 0<b) | inl (inr ab<0) = Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) (Equivalence.transitive eq *Commutative timesZero))) (invIdent additiveGroup)) (Equivalence.transitive eq (Equivalence.symmetric eq timesZero) *Commutative)) (*WellDefined 0=a (Equivalence.reflexive eq))
absRespectsTimes a b | inr 0=a | inl (inl 0<b) | inr 0=ab = Equivalence.reflexive eq
absRespectsTimes a b | inr 0=a | inl (inr b<0) with totality 0R (a * b)
absRespectsTimes a b | inr 0=a | inl (inr b<0) | inl (inl 0<ab) = Equivalence.transitive eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) *Commutative) (Equivalence.transitive eq timesZero (Equivalence.transitive eq (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative timesZero)) (*WellDefined 0=a (Equivalence.reflexive eq))))
absRespectsTimes a b | inr 0=a | inl (inr b<0) | inl (inr ab<0) = Equivalence.symmetric eq ringMinusExtracts
absRespectsTimes a b | inr 0=a | inl (inr b<0) | inr 0=ab = Equivalence.transitive eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) *Commutative) (Equivalence.transitive eq timesZero (Equivalence.transitive eq (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative timesZero)) (*WellDefined 0=a (Equivalence.reflexive eq))))
absRespectsTimes a b | inr 0=a | inr 0=b with totality 0R (a * b)
absRespectsTimes a b | inr 0=a | inr 0=b | inl (inl 0<ab) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) timesZero) 0<ab))
absRespectsTimes a b | inr 0=a | inr 0=b | inl (inr ab<0) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) timesZero) (Equivalence.reflexive eq) ab<0))
absRespectsTimes a b | inr 0=a | inr 0=b | inr 0=ab = Equivalence.reflexive eq
absNonnegative : {a : A} (abs a < 0R) False
absNonnegative {a} pr with totality 0R a
absNonnegative {a} pr | inl (inl x) = irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder x pr)
absNonnegative {a} pr | inl (inr x) = irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (<WellDefined (Equivalence.reflexive eq) (invTwice additiveGroup a) (lemm2 (inverse a) pr)) x)
absNonnegative {a} pr | inr x = irreflexive {0G} (<WellDefined (Equivalence.symmetric eq x) (Equivalence.reflexive eq) pr)
a-bPos : {a b : A} ((a b) False) 0R < abs (a + inverse b)
a-bPos {a} {b} a!=b with totality 0R (a + inverse b)
a-bPos {a} {b} a!=b | inl (inl x) = x
a-bPos {a} {b} a!=b | inl (inr x) = lemm2 _ x
a-bPos {a} {b} a!=b | inr x = exFalso (a!=b (transferToRight additiveGroup (Equivalence.symmetric eq x)))
absZeroImpliesZero : {a : A} abs a 0R a 0R
absZeroImpliesZero {a} a=0 with totality 0R a
absZeroImpliesZero {a} a=0 | inl (inl 0<a) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) a=0 0<a))
absZeroImpliesZero {a} a=0 | inl (inr a<0) = Equivalence.symmetric eq (lemm3 (inverse a) a (Equivalence.symmetric eq invLeft) (Equivalence.symmetric eq a=0))
absZeroImpliesZero {a} a=0 | inr 0=a = a=0
halvePositive : (a : A) 0R < (a + a) 0R < a
halvePositive a 0<2a with totality 0R a
halvePositive a 0<2a | inl (inl x) = x
@@ -305,71 +162,21 @@ abstract
0<1 0!=1 | inl (inr x) = <WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq twoNegativesTimes identIsIdent) (orderRespectsMultiplication (lemm2 1R x) (lemm2 1R x))
0<1 0!=1 | inr x = exFalso (0!=1 x)
addingAbsCannotShrink : {a b : A} 0G < b 0G < ((abs a) + b)
addingAbsCannotShrink {a} {b} 0<b with totality 0G a
addingAbsCannotShrink {a} {b} 0<b | inl (inl x) = <WellDefined identLeft (Equivalence.reflexive eq) (ringAddInequalities x 0<b)
addingAbsCannotShrink {a} {b} 0<b | inl (inr x) = <WellDefined identLeft (Equivalence.reflexive eq) (ringAddInequalities (lemm2 a x) 0<b)
addingAbsCannotShrink {a} {b} 0<b | inr x = <WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.symmetric eq identLeft) (+WellDefined x (Equivalence.reflexive eq))) 0<b
1<0False : (1R < 0R) False
1<0False 1<0 with orderRespectsMultiplication (lemm2 _ 1<0) (lemm2 _ 1<0)
... | bl = exFalso (irreflexive (SetoidPartialOrder.<Transitive pOrder 1<0 (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (twoNegativesTimes) identIsIdent) bl)))
greaterZeroImpliesEqualAbs : {a : A} 0R < a a abs a
greaterZeroImpliesEqualAbs {a} 0<a with totality 0R a
... | inl (inl _) = Equivalence.reflexive eq
... | inl (inr a<0) = exFalso (irreflexive (SetoidPartialOrder.<Transitive pOrder a<0 0<a))
... | inr 0=a = exFalso (irreflexive (<WellDefined 0=a (Equivalence.reflexive eq) 0<a))
lessZeroImpliesEqualNegAbs : {a : A} a < 0R abs a inverse a
lessZeroImpliesEqualNegAbs {a} a<0 with totality 0R a
... | inl (inr _) = Equivalence.reflexive eq
... | inl (inl 0<a) = exFalso (irreflexive (SetoidPartialOrder.<Transitive pOrder a<0 0<a))
... | inr 0=a = exFalso (irreflexive (<WellDefined (Equivalence.reflexive eq) 0=a a<0))
absZeroIsZero : abs 0R 0R
absZeroIsZero with totality 0R 0R
... | inl (inl bad) = exFalso (irreflexive bad)
... | inl (inr bad) = exFalso (irreflexive bad)
... | inr _ = Equivalence.reflexive eq
greaterThanAbsImpliesGreaterThan0 : {a b : A} (abs a) < b 0R < b
greaterThanAbsImpliesGreaterThan0 {a} {b} a<b with totality 0R a
greaterThanAbsImpliesGreaterThan0 {a} {b} a<b | inl (inl 0<a) = SetoidPartialOrder.<Transitive pOrder 0<a a<b
greaterThanAbsImpliesGreaterThan0 {a} {b} a<b | inl (inr a<0) = SetoidPartialOrder.<Transitive pOrder (lemm2 _ a<0) a<b
greaterThanAbsImpliesGreaterThan0 {a} {b} a<b | inr 0=a = <WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq) a<b
abs1Is1 : abs 1R 1R
abs1Is1 with totality 0R 1R
abs1Is1 | inl (inl 0<1) = Equivalence.reflexive eq
abs1Is1 | inl (inr 1<0) = exFalso (1<0False 1<0)
abs1Is1 | inr 0=1 = Equivalence.reflexive eq
absBoundedImpliesBounded : {a b : A} abs a < b a < b
absBoundedImpliesBounded {a} {b} a<b with totality 0G a
absBoundedImpliesBounded {a} {b} a<b | inl (inl x) = a<b
absBoundedImpliesBounded {a} {b} a<b | inl (inr x) = SetoidPartialOrder.<Transitive pOrder x (SetoidPartialOrder.<Transitive pOrder (lemm2 a x) a<b)
absBoundedImpliesBounded {a} {b} a<b | inr x = a<b
orderedImpliesCharNot2 : (0R 1R False) 1R + 1R 0R False
orderedImpliesCharNot2 0!=1 x = irreflexive (<WellDefined (identRight {0R}) x (ringAddInequalities (0<1 0!=1) (0<1 0!=1)))
open import Rings.InitialRing R
open Equivalence eq
fromNIncreasing : (0R 1R False) (n : ) (fromN n) < (fromN (succ n))
fromNIncreasing 0!=1 zero = <WellDefined reflexive (symmetric identRight) (0<1 0!=1)
fromNIncreasing 0!=1 (succ n) = <WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (fromNIncreasing 0!=1 n) 1R)
fromNPreservesOrder : (0R 1R False) {a b : } (a <N b) (fromN a) < (fromN b)
fromNPreservesOrder 0!=1 {zero} {succ zero} a<b = fromNIncreasing 0!=1 0
fromNPreservesOrder 0!=1 {zero} {succ (succ b)} a<b = <Transitive (fromNPreservesOrder 0!=1 (succIsPositive b)) (fromNIncreasing 0!=1 (succ b))
fromNPreservesOrder 0!=1 {succ a} {succ b} a<b = <WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (fromNPreservesOrder 0!=1 (canRemoveSuccFrom<N a<b)) 1R)
fromNPreservesOrder' : (0R 1R False) {a b : } (fromN a) < (fromN b) a <N b
fromNPreservesOrder' nontrivial {a} {b} a<b with TotalOrder.totality TotalOrder a b
... | inl (inl x) = x
... | inl (inr x) = exFalso (irreflexive (<Transitive a<b (fromNPreservesOrder nontrivial x)))
... | inl (inr x) = exFalso (irreflexive (<Transitive a<b (fromNPreservesOrder (0<1 nontrivial) x)))
... | inr x = exFalso (irreflexive (<WellDefined (fromNWellDefined x) reflexive a<b))
reciprocalPositive : (a b : A) .(0<a : 0R < a) (a * b 1R) 0R < b