Files
agdaproofs/Rings/Orders/Total/Definition.agda
2020-04-16 13:41:51 +01:00

23 lines
806 B
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Definition
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Setoids.Setoids
open import Functions
open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.Orders.Total.Definition {n m : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} where
open Ring R
open Group additiveGroup
open Setoid S
record TotallyOrderedRing {p : _} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} (pRing : PartiallyOrderedRing R pOrder) : Set (lsuc n m p) where
field
total : SetoidTotalOrder pOrder
open SetoidPartialOrder pOrder