mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-13 07:38:40 +00:00
Elevate the real numbers to actually existing (#65)
This commit is contained in:
39
Numbers/Reals/Definition.agda
Normal file
39
Numbers/Reals/Definition.agda
Normal file
@@ -0,0 +1,39 @@
|
||||
{-# OPTIONS --warning=error --safe --guardedness #-}
|
||||
|
||||
open import Setoids.Orders
|
||||
open import LogicalFormulae
|
||||
open import Rings.Definition
|
||||
open import Numbers.Rationals.Definition
|
||||
|
||||
module Numbers.Reals.Definition where
|
||||
|
||||
open import Fields.CauchyCompletion.Definition ℚOrdered ℚField
|
||||
open import Fields.CauchyCompletion.Setoid ℚOrdered ℚField ℚcharNot2
|
||||
open import Fields.CauchyCompletion.Addition ℚOrdered ℚField ℚcharNot2
|
||||
open import Fields.CauchyCompletion.Multiplication ℚOrdered ℚField ℚcharNot2
|
||||
open import Fields.CauchyCompletion.Ring ℚOrdered ℚField ℚcharNot2
|
||||
open import Fields.CauchyCompletion.Comparison ℚOrdered ℚField ℚcharNot2
|
||||
|
||||
ℝ : Set
|
||||
ℝ = CauchyCompletion
|
||||
|
||||
_+R_ : ℝ → ℝ → ℝ
|
||||
_+R_ = _+C_
|
||||
|
||||
_*R_ : ℝ → ℝ → ℝ
|
||||
_*R_ = _*C_
|
||||
|
||||
ℝRing : Ring cauchyCompletionSetoid _+R_ _*R_
|
||||
ℝRing = CRing
|
||||
|
||||
injectionR : ℚ → ℝ
|
||||
injectionR = injection
|
||||
|
||||
0R : ℝ
|
||||
0R = injection 0Q
|
||||
|
||||
_<R_ : ℝ → ℝ → Set
|
||||
_<R_ = _<C_
|
||||
|
||||
ℝPartialOrder : SetoidPartialOrder cauchyCompletionSetoid _<C_
|
||||
ℝPartialOrder = <COrder
|
Reference in New Issue
Block a user