Multiplication is compatible with field structure (#18)

This commit is contained in:
Patrick Stevens
2019-01-13 13:40:22 +00:00
committed by GitHub
parent 2866b11be6
commit 37a60bde17

View File

@@ -73,7 +73,6 @@ module Fields.FieldOfFractionsOrder where
q = SetoidPartialOrder.wellDefined pOrder reflexive (multWellDefined x=z reflexive) p
r : ((numY * denomZ) * denomX) < ((numZ * denomY) * denomX)
r = SetoidPartialOrder.wellDefined pOrder (transitive (symmetric multAssoc) (transitive (multWellDefined reflexive multCommutative) multAssoc)) (transitive (symmetric multAssoc) multCommutative) q
fieldOfFractionsOrderWellDefinedLeft {S = S} {_*_ = _*_} {R} {pOrder = pOrder} {tOrder = tOrder} I order {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inl (inr denomX<0) | inl (inr x) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomY x))
fieldOfFractionsOrderWellDefinedLeft {S = S} {_*_ = _*_} {R} {tOrder = tOrder} I order {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inl (inr denomX<0) | inr x = exFalso (denomY!=0 (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S)) x))
fieldOfFractionsOrderWellDefinedLeft {S = S} {_*_ = _*_} {R} {tOrder = tOrder} I order {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inr 0=denomX = exFalso (denomX!=0 (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S)) 0=denomX))
@@ -394,19 +393,22 @@ module Fields.FieldOfFractionsOrder where
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder {S = S} {_*_ = _*_} {R} {_<_} {pOrder} {tOrder} I oRing) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inr x = exFalso (denomB!=0 (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S)) x))
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder {S = S} {_*_ = _*_} {R} {_<_} {pOrder} {tOrder} I oRing) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inr x = exFalso (denomA!=0 (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S)) x))
{-
fieldOfFractionsOrderedRing : {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {c} A} {pOrder : SetoidPartialOrder S _<_} {tOrder : SetoidTotalOrder pOrder} (I : IntegralDomain R) (order : OrderedRing R tOrder) OrderedRing (fieldOfFractionsRing I) (fieldOfFractionsTotalOrder I order)
OrderedRing.orderRespectsAddition (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) with SetoidTotalOrder.totality tOrder (Ring.0R R) (denomA * denomC)
OrderedRing.orderRespectsAddition (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) with SetoidTotalOrder.totality tOrder (Ring.0R R) (denomB * denomC)
OrderedRing.orderRespectsAddition (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) with SetoidTotalOrder.totality tOrder (Ring.0R R) denomA
OrderedRing.orderRespectsAddition (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inl (inl 0<dA) with SetoidTotalOrder.totality tOrder (Ring.0R R) denomB
OrderedRing.orderRespectsAddition (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inl (inl 0<dA) | inl (inl 0<dB) = {!!}
OrderedRing.orderRespectsAddition (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inl (inl 0<dA) | inl (inl 0<dB) = SetoidPartialOrder.wellDefined pOrder (symmetric multAssoc) (symmetric multAssoc) (ringCanMultiplyByPositive oRing 0<dC {!!})
where
open Setoid S
open Symmetric (Equivalence.symmetricEq (Setoid.eq S))
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S))
open Transitive (Equivalence.transitiveEq (Setoid.eq S))
open Ring R
0<dC : 0R < denomC
0<dC with SetoidTotalOrder.totality tOrder 0R denomC
0<dC | inl (inl x) = x
0<dC | inl (inr dC<0) = {!!}
0<dC | inl (inr dC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<dBdC (SetoidPartialOrder.wellDefined pOrder reflexive (transitive multCommutative (ringTimesZero R)) (ringCanMultiplyByNegative oRing dC<0 0<dB))))
0<dC | inr x = exFalso (denomC!=0 (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S)) x))
OrderedRing.orderRespectsAddition (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inl (inl 0<dA) | inl (inr dB<0) = {!!}
OrderedRing.orderRespectsAddition (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inl (inl 0<dA) | inr x = exFalso (denomB!=0 (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S)) x))
@@ -420,6 +422,115 @@ module Fields.FieldOfFractionsOrder where
OrderedRing.orderRespectsAddition (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inr (0=dAdC) with IntegralDomain.intDom I (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S)) 0=dAdC)
OrderedRing.orderRespectsAddition (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inr 0=dAdC | inl x = exFalso (denomA!=0 x)
OrderedRing.orderRespectsAddition (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inr 0=dAdC | inr x = exFalso (denomC!=0 x)
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) = {!!}
-}
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} t u with SetoidTotalOrder.totality tOrder (Ring.0R R) (Ring.1R R)
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) with SetoidTotalOrder.totality tOrder (Ring.0R R) (denomA * denomB)
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) with SetoidTotalOrder.totality tOrder (Ring.0R R) denomB
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inl 0<dB) with SetoidTotalOrder.totality tOrder (Ring.0R R) denomA
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inl 0<dB) | inl (inl 0<dA) = SetoidPartialOrder.wellDefined pOrder (symmetric (transitive multCommutative (ringTimesZero R))) (symmetric (transitive multCommutative multIdentIsIdent)) 0<nAnB
where
open Setoid S
open Symmetric (Equivalence.symmetricEq (Setoid.eq S))
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S))
open Transitive (Equivalence.transitiveEq (Setoid.eq S))
open Ring R
0<nA : 0R < numA
0<nA = SetoidPartialOrder.wellDefined pOrder (transitive multCommutative (ringTimesZero R)) (transitive multCommutative multIdentIsIdent) 0<a
0<nB : 0R < numB
0<nB = SetoidPartialOrder.wellDefined pOrder (transitive multCommutative (ringTimesZero R)) (transitive multCommutative multIdentIsIdent) 0<b
0<nAnB : 0R < (numA * numB)
0<nAnB = SetoidPartialOrder.wellDefined pOrder (transitive multCommutative (ringTimesZero R)) reflexive (ringCanMultiplyByPositive oRing 0<nB 0<nA)
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inl 0<dB) | inl (inr dA<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<dAdB (SetoidPartialOrder.wellDefined pOrder multCommutative (transitive multCommutative (ringTimesZero R)) (ringCanMultiplyByNegative oRing dA<0 0<dB))))
where
open Setoid S
open Symmetric (Equivalence.symmetricEq (Setoid.eq S))
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S))
open Transitive (Equivalence.transitiveEq (Setoid.eq S))
open Ring R
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inl 0<dB) | inr x = exFalso (denomA!=0 (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S)) x))
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inr dB<0) with SetoidTotalOrder.totality tOrder (Ring.0R R) denomA
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inr dB<0) | inl (inl 0<dA) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<dAdB (SetoidPartialOrder.wellDefined pOrder reflexive (transitive multCommutative (ringTimesZero R)) (ringCanMultiplyByNegative oRing dB<0 0<dA))))
where
open Setoid S
open Symmetric (Equivalence.symmetricEq (Setoid.eq S))
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S))
open Transitive (Equivalence.transitiveEq (Setoid.eq S))
open Ring R
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inr dB<0) | inl (inr dA<0) = SetoidPartialOrder.wellDefined pOrder (symmetric (transitive multCommutative (ringTimesZero R))) (symmetric (transitive multCommutative multIdentIsIdent)) 0<nAnB
where
open Setoid S
open Symmetric (Equivalence.symmetricEq (Setoid.eq S))
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S))
open Transitive (Equivalence.transitiveEq (Setoid.eq S))
open Ring R
nB<0 : numB < 0R
nB<0 = SetoidPartialOrder.wellDefined pOrder (transitive multCommutative multIdentIsIdent) (transitive multCommutative (ringTimesZero R)) 0<b
nA<0 : numA < 0R
nA<0 = SetoidPartialOrder.wellDefined pOrder (transitive multCommutative multIdentIsIdent) (transitive multCommutative (ringTimesZero R)) 0<a
0<nAnB : 0R < (numA * numB)
0<nAnB = SetoidPartialOrder.wellDefined pOrder (transitive multCommutative (ringTimesZero R)) multCommutative (ringCanMultiplyByNegative oRing nA<0 nB<0)
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inr dB<0) | inr x = exFalso (denomA!=0 (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S)) x))
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inr x = exFalso (denomB!=0 (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S)) x))
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) with SetoidTotalOrder.totality tOrder (Ring.0R R) denomB
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inl 0<denomB) with SetoidTotalOrder.totality tOrder (Ring.0R R) denomA
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inl 0<denomB) | inl (inl 0<denomA) = exFalso f
where
open Setoid S
open Symmetric (Equivalence.symmetricEq (Setoid.eq S))
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S))
open Transitive (Equivalence.transitiveEq (Setoid.eq S))
open Ring R
f : False
f with OrderedRing.orderRespectsMultiplication oRing 0<denomA 0<denomB
... | bl = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder bl dAdB<0)
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inl 0<denomB) | inl (inr denomA<0) = SetoidPartialOrder.wellDefined pOrder (symmetric (transitive multCommutative multIdentIsIdent)) (symmetric (transitive multCommutative (ringTimesZero R))) ans
where
open Setoid S
open Symmetric (Equivalence.symmetricEq (Setoid.eq S))
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S))
open Transitive (Equivalence.transitiveEq (Setoid.eq S))
open Ring R
0<nB : 0R < numB
0<nB = SetoidPartialOrder.wellDefined pOrder (transitive multCommutative (ringTimesZero R)) (transitive multCommutative multIdentIsIdent) 0<b
nA<0 : numA < 0R
nA<0 = SetoidPartialOrder.wellDefined pOrder (transitive multCommutative multIdentIsIdent) (transitive multCommutative (ringTimesZero R)) 0<a
ans : (numA * numB) < 0R
ans = SetoidPartialOrder.wellDefined pOrder multCommutative (transitive multCommutative (ringTimesZero R)) (ringCanMultiplyByNegative oRing nA<0 0<nB)
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inl 0<denomB) | inr x = exFalso (denomA!=0 (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S)) x))
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inr denomB<0) with SetoidTotalOrder.totality tOrder (Ring.0R R) denomA
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inr denomB<0) | inl (inl 0<denomA) = SetoidPartialOrder.wellDefined pOrder (symmetric (transitive multCommutative multIdentIsIdent)) (symmetric (transitive multCommutative (ringTimesZero R))) nAnB<0
where
open Setoid S
open Symmetric (Equivalence.symmetricEq (Setoid.eq S))
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S))
open Transitive (Equivalence.transitiveEq (Setoid.eq S))
open Ring R
nB<0 : numB < 0R
nB<0 = SetoidPartialOrder.wellDefined pOrder (transitive multCommutative multIdentIsIdent) (transitive multCommutative (ringTimesZero R)) 0<b
0<nA : 0R < numA
0<nA = SetoidPartialOrder.wellDefined pOrder (transitive multCommutative (ringTimesZero R)) (transitive multCommutative multIdentIsIdent) 0<a
nAnB<0 : (numA * numB) < 0R
nAnB<0 = SetoidPartialOrder.wellDefined pOrder reflexive (transitive multCommutative (ringTimesZero R)) (ringCanMultiplyByNegative oRing nB<0 0<nA)
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inr denomB<0) | inl (inr denomA<0) = exFalso f
where
open Setoid S
open Symmetric (Equivalence.symmetricEq (Setoid.eq S))
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S))
open Transitive (Equivalence.transitiveEq (Setoid.eq S))
open Ring R
h : 0R < (denomA * denomB)
h = SetoidPartialOrder.wellDefined pOrder (transitive multCommutative (ringTimesZero R)) reflexive (ringCanMultiplyByNegative oRing denomB<0 denomA<0)
f : False
f = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder dAdB<0 h)
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inr denomB<0) | inr x = exFalso (denomA!=0 (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S)) x))
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inr x = exFalso (denomB!=0 (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S)) x))
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inr 0=dAdB with IntegralDomain.intDom I (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S)) 0=dAdB)
... | inl x = exFalso (denomA!=0 x)
... | inr x = exFalso (denomB!=0 x)
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inr 1<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 1<0 (SetoidPartialOrder.wellDefined pOrder (transitive multCommutative (ringTimesZero R)) multIdentIsIdent (ringCanMultiplyByNegative oRing 1<0 1<0))))
where
open Setoid S
open Symmetric (Equivalence.symmetricEq (Setoid.eq S))
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S))
open Transitive (Equivalence.transitiveEq (Setoid.eq S))
open Ring R
OrderedRing.orderRespectsMultiplication (fieldOfFractionsOrderedRing {S = S} {_+_} {_*_} {R} {_<_} {pOrder} {tOrder} I oRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inr x = exFalso (IntegralDomain.nontrivial I (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S)) x))