mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-10 14:18:41 +00:00
Primes and mod-n into the fold (#47)
This commit is contained in:
@@ -3,11 +3,13 @@
|
||||
open import LogicalFormulae
|
||||
open import Orders
|
||||
open import Groups.Groups
|
||||
open import Numbers.Naturals
|
||||
open import PrimeNumbers
|
||||
open import Numbers.Naturals.Naturals
|
||||
open import Numbers.Naturals.WithK
|
||||
open import Numbers.Primes.PrimeNumbers
|
||||
open import Rings.Definition
|
||||
open import Setoids.Setoids
|
||||
open import IntegersModN
|
||||
open import Numbers.Modulo.IntegersModN
|
||||
open import Semirings.Definition
|
||||
|
||||
module IntegersModNRing where
|
||||
modNToℕ : {n : ℕ} {pr : 0 <N n} → (a : ℤn n pr) → ℕ
|
||||
@@ -48,7 +50,7 @@ module IntegersModNRing where
|
||||
ℤnMultIdent {succ zero} {pr} record { x = (succ a) ; xLess = (le diff proof) } = exFalso f
|
||||
where
|
||||
f : False
|
||||
f rewrite additionNIsCommutative diff (succ a) = naughtE (succInjective (equalityCommutative proof))
|
||||
f rewrite Semiring.commutative ℕSemiring diff (succ a) = naughtE (succInjective (equalityCommutative proof))
|
||||
ℤnMultIdent {succ (succ n)} {pr} record { x = a ; xLess = aLess } with orderIsTotal a (succ (succ n))
|
||||
ℤnMultIdent {succ (succ n)} {pr} record { x = a ; xLess = aLess } | inl (inl a<ssn) = equalityZn _ _ refl
|
||||
ℤnMultIdent {succ (succ n)} {pr} record { x = a ; xLess = aLess } | inl (inr ssn<a) = exFalso (PartialOrder.irreflexive (TotalOrder.order ℕTotalOrder) (PartialOrder.transitive (TotalOrder.order ℕTotalOrder) aLess ssn<a))
|
||||
|
Reference in New Issue
Block a user