Primes and mod-n into the fold (#47)

This commit is contained in:
Patrick Stevens
2019-10-02 18:59:46 +01:00
committed by GitHub
parent 00ce1dfdf8
commit 21ee0f899d
10 changed files with 48 additions and 39 deletions

View File

@@ -2,7 +2,8 @@
-- This file contains everything that is --safe, but uses K.
open import PrimeNumbers
open import Numbers.Primes.PrimeNumbers
open import Numbers.Primes.IntegerFactorisation
open import Numbers.Rationals
open import Numbers.RationalsLemmas
@@ -10,7 +11,7 @@ open import Logic.PropositionalLogic
open import Logic.PropositionalLogicExamples
open import Logic.PropositionalAxiomsTautology
open import IntegersModN
open import Numbers.Modulo.IntegersModN
open import Sets.FinSetWithK

View File

@@ -11,7 +11,7 @@ open import Sets.FinSet
open import Groups.Definition
open import Groups.Groups
open import Rings.Definition
open import IntegersModN
open import Numbers.Modulo.IntegersModN
open import Semirings.Definition
module Groups.LectureNotes.Lecture1 where

View File

@@ -3,11 +3,13 @@
open import LogicalFormulae
open import Orders
open import Groups.Groups
open import Numbers.Naturals
open import PrimeNumbers
open import Numbers.Naturals.Naturals
open import Numbers.Naturals.WithK
open import Numbers.Primes.PrimeNumbers
open import Rings.Definition
open import Setoids.Setoids
open import IntegersModN
open import Numbers.Modulo.IntegersModN
open import Semirings.Definition
module IntegersModNRing where
modNTo : {n : } {pr : 0 <N n} (a : n n pr)
@@ -48,7 +50,7 @@ module IntegersModNRing where
nMultIdent {succ zero} {pr} record { x = (succ a) ; xLess = (le diff proof) } = exFalso f
where
f : False
f rewrite additionNIsCommutative diff (succ a) = naughtE (succInjective (equalityCommutative proof))
f rewrite Semiring.commutative Semiring diff (succ a) = naughtE (succInjective (equalityCommutative proof))
nMultIdent {succ (succ n)} {pr} record { x = a ; xLess = aLess } with orderIsTotal a (succ (succ n))
nMultIdent {succ (succ n)} {pr} record { x = a ; xLess = aLess } | inl (inl a<ssn) = equalityZn _ _ refl
nMultIdent {succ (succ n)} {pr} record { x = a ; xLess = aLess } | inl (inr ssn<a) = exFalso (PartialOrder.irreflexive (TotalOrder.order TotalOrder) (PartialOrder.transitive (TotalOrder.order TotalOrder) aLess ssn<a))

View File

@@ -1,11 +1,13 @@
{-# OPTIONS --safe --warning=error #-}
-- These are explicitly with-K, because we currently encode an element of Zn as
-- a natural together with a proof that it is small.
open import LogicalFormulae
open import Groups.Definition
open import Groups.Groups
open import Numbers.Naturals.Naturals
open import Numbers.Naturals.Addition -- TODO remove this dependency
open import PrimeNumbers
open import Numbers.Primes.PrimeNumbers
open import Setoids.Setoids
open import Sets.FinSet
open import Sets.FinSetWithK
@@ -14,7 +16,7 @@ open import Numbers.Naturals.WithK
open import Semirings.Definition
open import Orders
module IntegersModN where
module Numbers.Modulo.IntegersModN where
record n (n : ) (pr : 0 <N n) : Set where
field
x :

View File

@@ -1,11 +1,15 @@
{-# OPTIONS --warning=error --safe #-}
open import LogicalFormulae
open import Naturals
open import PrimeNumbers
open import Numbers.Naturals.Naturals
open import Numbers.Naturals.Addition
open import Numbers.Naturals.Order
open import Numbers.Primes.PrimeNumbers
open import WellFoundedInduction
open import Semirings.Definition
open import Orders
module IntegerFactorisation where
module Numbers.Primes.IntegerFactorisation where
-- Represent a factorisation into increasing factors
-- Note that 0 cannot be expressed this way.
@@ -23,23 +27,23 @@ module IntegerFactorisation where
otherFactors : ((divisionAlgResult.quot firstFactorDivision 1) && (otherFactorsNumber 0)) || (((1 <N divisionAlgResult.quot firstFactorDivision) && (factorisationNonunit firstFactor (divisionAlgResult.quot firstFactorDivision))))
lemma : (p : ) p *N 1 +N 0 p
lemma p rewrite addZeroRight (p *N 1) | productWithOneRight p = refl
lemma p rewrite Semiring.sumZeroRight Semiring (p *N 1) | Semiring.productOneRight Semiring p = refl
lemma' : {a b : } a *N zero +N 0 b b zero
lemma' {a} {b} pr rewrite addZeroRight (a *N zero) | productZeroIsZeroRight a = equalityCommutative pr
lemma' {a} {b} pr rewrite Semiring.sumZeroRight Semiring (a *N zero) | Semiring.productZeroRight Semiring a = equalityCommutative pr
primeFactorisation : {p : } (pr : Prime p) factorisationNonunit 1 p
primeFactorisation {p} record { p>1 = p>1 ; pr = pr } = record {1<a = p>1 ; firstFactor = p ; firstFactorNontrivial = p>1 ; firstFactorBiggerMin = inl p>1 ; firstFactorDivision = record { quot = 1 ; rem = 0 ; pr = lemma p ; remIsSmall = zeroIsValidRem p } ; firstFactorDivides = refl ; firstFactorPrime = record { p>1 = p>1 ; pr = pr} ; otherFactors = inl record { fst = refl ; snd = refl } ; otherFactorsNumber = 0 }
primeFactorisation {p} record { p>1 = p>1 ; pr = pr } = record {1<a = p>1 ; firstFactor = p ; firstFactorNontrivial = p>1 ; firstFactorBiggerMin = inl p>1 ; firstFactorDivision = record { quot = 1 ; rem = 0 ; pr = lemma p ; remIsSmall = zeroIsValidRem p ; quotSmall = inl (TotalOrder.transitive TotalOrder (le zero refl) p>1) } ; firstFactorDivides = refl ; firstFactorPrime = record { p>1 = p>1 ; pr = pr} ; otherFactors = inl record { fst = refl ; snd = refl } ; otherFactorsNumber = 0 }
where
proof : (s : ) s *N 1 +N 0 s
proof s rewrite addZeroRight (s *N 1) | multiplicationNIsCommutative s 1 | addZeroRight s = refl
proof s rewrite Semiring.sumZeroRight Semiring (s *N 1) | multiplicationNIsCommutative s 1 | Semiring.sumZeroRight Semiring s = refl
twoAsFact : factorisationNonunit 2 2
factorisationNonunit.1<a twoAsFact = succPreservesInequality (succIsPositive 0)
factorisationNonunit.firstFactor twoAsFact = 2
factorisationNonunit.firstFactorNontrivial twoAsFact = succPreservesInequality (succIsPositive 0)
factorisationNonunit.firstFactorBiggerMin twoAsFact = inr refl
factorisationNonunit.firstFactorDivision twoAsFact = record { quot = 1 ; rem = 0 ; remIsSmall = zeroIsValidRem 2 ; pr = refl}
factorisationNonunit.firstFactorDivision twoAsFact = record { quot = 1 ; rem = 0 ; remIsSmall = zeroIsValidRem 2 ; pr = refl ; quotSmall = inl (le 1 refl) }
factorisationNonunit.firstFactorDivides twoAsFact = refl
factorisationNonunit.firstFactorPrime twoAsFact = twoIsPrime
factorisationNonunit.otherFactorsNumber twoAsFact = 0
@@ -50,7 +54,7 @@ module IntegerFactorisation where
factorisationNonunit.firstFactor fourFact = 2
factorisationNonunit.firstFactorNontrivial fourFact = succPreservesInequality (succIsPositive 0)
factorisationNonunit.firstFactorBiggerMin fourFact = inl (succPreservesInequality (succIsPositive 0))
factorisationNonunit.firstFactorDivision fourFact = record { quot = 2 ; rem = 0 ; remIsSmall = zeroIsValidRem 2 ; pr = refl}
factorisationNonunit.firstFactorDivision fourFact = record { quot = 2 ; rem = 0 ; remIsSmall = zeroIsValidRem 2 ; pr = refl ; quotSmall = inl (le 1 refl) }
factorisationNonunit.firstFactorDivides fourFact = refl
factorisationNonunit.firstFactorPrime fourFact = twoIsPrime
factorisationNonunit.otherFactorsNumber fourFact = 1
@@ -84,18 +88,18 @@ module IntegerFactorisation where
lemma2 {succ (succ a)} {succ b} {c} 1<a t pr = le (b +N (a *N succ b)) go
where
assocLemm : (a b c : ) (a +N b) +N c (a +N c) +N b
assocLemm a b c rewrite additionNIsAssociative a b c | additionNIsCommutative b c | equalityCommutative (additionNIsAssociative a c b) = refl
assocLemm a b c rewrite equalityCommutative (Semiring.+Associative Semiring a b c) | Semiring.commutative Semiring b c | Semiring.+Associative Semiring a c b = refl
go : succ ((b +N a *N succ b) +N succ b) c
go rewrite addZeroRight (succ (b +N succ (b +N a *N succ b))) | equalityCommutative (assocLemm b (succ b) (a *N succ b)) | additionNIsAssociative b (succ b) (a *N succ b) = pr
go rewrite Semiring.sumZeroRight Semiring (succ (b +N succ (b +N a *N succ b))) | equalityCommutative (assocLemm b (succ b) (a *N succ b)) | Semiring.+Associative Semiring b (succ b) (a *N succ b) = pr
factorIntegerLemma : (x : ) (indHyp : (y : ) (y<x : y <N x) ((y <N 2) || (factorisationNonunit 1 y))) ((x <N 2) || (factorisationNonunit 1 x))
factorIntegerLemma zero indHyp = inl (succIsPositive 1)
factorIntegerLemma (succ zero) indHyp = inl (succPreservesInequality (succIsPositive 0))
factorIntegerLemma (succ (succ x)) indHyp with everyNumberHasAPrimeFactor {succ (succ x)} (succPreservesInequality (succIsPositive x))
factorIntegerLemma (succ (succ x)) indHyp | a , record { fst = record { fst = divides record {quot = zero ; rem = .0 ; pr = ssxDivA ; remIsSmall = r } refl ; snd = 1<a }; snd = record { fst = primeA ; snd = smallerFactors } } rewrite addZeroRight (a *N zero) | multiplicationNIsCommutative a 0 = naughtE ssxDivA
factorIntegerLemma (succ (succ x)) indHyp | a , record { fst = record { fst = divides record {quot = succ zero ; rem = .0 ; pr = ssxDivA ; remIsSmall = r } refl ; snd = 1<a }; snd = record { fst = primeA ; snd = smallerFactors } } = inr record { 1<a = succPreservesInequality (succIsPositive x) ; firstFactor = a ; firstFactorNontrivial = Prime.p>1 primeA ; firstFactorBiggerMin = inl (Prime.p>1 primeA) ; firstFactorDivision = record { quot = 1 ; rem = 0 ; pr = ssxDivA ; remIsSmall = r} ; firstFactorDivides = refl ; firstFactorPrime = record { p>1 = Prime.p>1 primeA ; pr = Prime.pr primeA } ; otherFactors = inl record { fst = refl ; snd = refl } ; otherFactorsNumber = 0 }
factorIntegerLemma (succ (succ x)) indHyp | a , record { fst = record { fst = divides record {quot = zero ; rem = .0 ; pr = ssxDivA ; remIsSmall = r } refl ; snd = 1<a }; snd = record { fst = primeA ; snd = smallerFactors } } rewrite Semiring.sumZeroRight Semiring (a *N zero) | multiplicationNIsCommutative a 0 = naughtE ssxDivA
factorIntegerLemma (succ (succ x)) indHyp | a , record { fst = record { fst = divides record {quot = succ zero ; rem = .0 ; pr = ssxDivA ; remIsSmall = r } refl ; snd = 1<a }; snd = record { fst = primeA ; snd = smallerFactors } } = inr record { 1<a = succPreservesInequality (succIsPositive x) ; firstFactor = a ; firstFactorNontrivial = Prime.p>1 primeA ; firstFactorBiggerMin = inl (Prime.p>1 primeA) ; firstFactorDivision = record { quot = 1 ; rem = 0 ; pr = ssxDivA ; remIsSmall = r ; quotSmall = inl (TotalOrder.transitive TotalOrder (le zero refl) 1<a) } ; firstFactorDivides = refl ; firstFactorPrime = record { p>1 = Prime.p>1 primeA ; pr = Prime.pr primeA } ; otherFactors = inl record { fst = refl ; snd = refl } ; otherFactorsNumber = 0 }
factorIntegerLemma (succ (succ x)) indHyp | a , record { fst = record { fst = divides record {quot = succ (succ qu) ; rem = .0 ; pr = ssxDivA ; remIsSmall = remSmall } refl ; snd = 1<a }; snd = record { fst = primeA ; snd = smallerFactors } } = inr record { 1<a = succPreservesInequality (succIsPositive x) ; firstFactor = a ; firstFactorNontrivial = Prime.p>1 primeA ; firstFactorBiggerMin = inl (Prime.p>1 primeA) ; firstFactorDivision = record { quot = succ (succ qu) ; rem = 0 ; pr = ssxDivA ; remIsSmall = remSmall} ; firstFactorDivides = refl ; firstFactorPrime = record { p>1 = Prime.p>1 primeA ; pr = Prime.pr primeA } ; otherFactors = inr record {fst = succPreservesInequality (succIsPositive qu) ; snd = factNonunit} ; otherFactorsNumber = succ (factorisationNonunit.otherFactorsNumber indHypRes') }
factorIntegerLemma (succ (succ x)) indHyp | a , record { fst = record { fst = divides record {quot = succ (succ qu) ; rem = .0 ; pr = ssxDivA ; remIsSmall = remSmall } refl ; snd = 1<a }; snd = record { fst = primeA ; snd = smallerFactors } } = inr record { 1<a = succPreservesInequality (succIsPositive x) ; firstFactor = a ; firstFactorNontrivial = Prime.p>1 primeA ; firstFactorBiggerMin = inl (Prime.p>1 primeA) ; firstFactorDivision = record { quot = succ (succ qu) ; rem = 0 ; pr = ssxDivA ; remIsSmall = remSmall ; quotSmall = inl (TotalOrder.transitive TotalOrder (le zero refl) 1<a) } ; firstFactorDivides = refl ; firstFactorPrime = record { p>1 = Prime.p>1 primeA ; pr = Prime.pr primeA } ; otherFactors = inr record {fst = succPreservesInequality (succIsPositive qu) ; snd = factNonunit} ; otherFactorsNumber = succ (factorisationNonunit.otherFactorsNumber indHypRes') }
where
indHypRes : ((succ (succ qu)) <N 2) || factorisationNonunit 1 (succ (succ qu))
indHypRes = indHyp (succ (succ qu)) (lemma2 {a} {succ (succ qu)} {succ (succ x)} 1<a (succIsPositive (succ qu)) ssxDivA)
@@ -104,12 +108,12 @@ module IntegerFactorisation where
indHypRes' | inl y = exFalso (zeroNeverGreater (canRemoveSuccFrom<N (canRemoveSuccFrom<N y)))
indHypRes' | inr y = y
z|ssx : (z : ) z succ (succ qu) z succ (succ x)
z|ssx z z|ssq = (divisibilityTransitive z|ssq (divides (record { quot = a ; rem = 0 ; pr = identityOfIndiscernablesLeft (a *N succ (succ qu) +N 0) (succ (succ x)) (succ (succ qu) *N a +N 0) _≡_ ssxDivA (applyEquality (λ t t +N 0) (multiplicationNIsCommutative a (succ (succ qu)))) ; remIsSmall = zeroIsValidRem (succ (succ qu))}) refl))
z|ssx z z|ssq = (divisibilityTransitive z|ssq (divides (record { quot = a ; rem = 0 ; pr = identityOfIndiscernablesLeft (a *N succ (succ qu) +N 0) (succ (succ x)) (succ (succ qu) *N a +N 0) _≡_ ssxDivA (applyEquality (λ t t +N 0) (multiplicationNIsCommutative a (succ (succ qu)))) ; remIsSmall = zeroIsValidRem (succ (succ qu)) ; quotSmall = inl (succIsPositive _) }) refl))
factNonunit : factorisationNonunit a (succ (succ qu))
factNonunit with orderIsTotal a (factorisationNonunit.firstFactor indHypRes')
factNonunit | inl (inl a<ff) = canIncreaseFactorBound indHypRes' (λ z 1<z z<a z|ssq smallerFactors z z<a 1<z (z|ssx z z|ssq)) (inl a<ff)
factNonunit | inl (inr ff<a) = exFalso (smallerFactors (factorisationNonunit.firstFactor indHypRes') ff<a (factorisationNonunit.firstFactorNontrivial indHypRes') (z|ssx (factorisationNonunit.firstFactor indHypRes') (divides (factorisationNonunit.firstFactorDivision indHypRes') (factorisationNonunit.firstFactorDivides indHypRes'))))
factNonunit | inr ff=a = canIncreaseFactorBound indHypRes' (λ z 1<z z<a z|ssq smallerFactors z z<a 1<z (divisibilityTransitive z|ssq (divides (record { quot = a ; rem = 0 ; pr = identityOfIndiscernablesLeft (a *N succ (succ qu) +N 0) (succ (succ x)) (succ (succ qu) *N a +N 0) _≡_ ssxDivA (applyEquality (λ t t +N 0) (multiplicationNIsCommutative a (succ (succ qu)))) ; remIsSmall = zeroIsValidRem (succ (succ qu))}) refl))) (inr ff=a)
factNonunit | inr ff=a = canIncreaseFactorBound indHypRes' (λ z 1<z z<a z|ssq smallerFactors z z<a 1<z (divisibilityTransitive z|ssq (divides (record { quot = a ; rem = 0 ; pr = identityOfIndiscernablesLeft (a *N succ (succ qu) +N 0) (succ (succ x)) (succ (succ qu) *N a +N 0) _≡_ ssxDivA (applyEquality (λ t t +N 0) (multiplicationNIsCommutative a (succ (succ qu)))) ; remIsSmall = zeroIsValidRem (succ (succ qu)) ; quotSmall = inl (succIsPositive _) }) refl))) (inr ff=a)
factorInteger : (a : ) (1 <N a) factorisationNonunit 1 a
factorInteger a 1<a with (rec <NWellfounded (λ n (n <N 2) || (factorisationNonunit 1 n))) factorIntegerLemma
@@ -123,16 +127,16 @@ module IntegerFactorisation where
lemma4' : {quot rem b : } (quot +N quot) +N rem succ b quot <N succ b
lemma4' {zero} {rem} {b} pr = succIsPositive b
lemma4' {succ quot} {rem} {b} pr rewrite equalityCommutative (succExtracts (quot +N succ quot) rem) | additionNIsCommutative quot (succ quot) | additionNIsAssociative (succ quot) quot (succ rem) | succExtracts quot rem | additionNIsCommutative (succ quot) (succ (quot +N rem)) = le (quot +N rem) pr
lemma4' {succ quot} {rem} {b} pr rewrite equalityCommutative (Semiring.+Associative Semiring quot (succ quot) rem) = succPreservesInequality (le (quot +N rem) (succInjective (transitivity (applyEquality succ (Semiring.commutative Semiring _ quot)) pr)))
lemma4 : {quot a rem b : } (a *N quot +N rem succ b) (1 <N a) (quot <N succ b)
lemma4 {quot} {zero} {rem} {b} pr 1<a = exFalso (zeroNeverGreater 1<a)
lemma4 {quot} {succ zero} {rem} {b} pr 1<a = exFalso (lessIrreflexive 1<a)
lemma4 {quot} {succ (succ zero)} {rem} {b} pr 1<a rewrite addZeroRight quot = lemma4' pr
lemma4 {quot} {succ (succ zero)} {rem} {b} pr 1<a rewrite Semiring.sumZeroRight Semiring quot = lemma4' pr
lemma4 {quot} {succ (succ (succ a))} {rem} {b} pr 1<a = lemma4 {quot} {succ (succ a)} {quot +N rem} {b} p' (succPreservesInequality (succIsPositive a))
where
p' : (quot +N (quot +N a *N quot)) +N (quot +N rem) succ b
p' rewrite additionNIsCommutative quot (quot +N (quot +N a *N quot)) | additionNIsAssociative (quot +N (quot +N a *N quot)) quot rem = pr
p' rewrite Semiring.commutative Semiring quot (quot +N (quot +N a *N quot)) | Semiring.+Associative Semiring (quot +N (quot +N a *N quot)) quot rem = pr
noSmallerFactors : {a i p : } (factorisationNonunit i a) (Prime p) (p <N i) (p a) False
noSmallerFactors {a} {i} {p} factA pPrime p<i p|a with rec <NWellfounded (λ b (factorisationNonunit i b) p b False)
@@ -163,7 +167,7 @@ module IntegerFactorisation where
inter' : firstFactor *N (divisionAlgResult.quot firstFactorDivision) +N 0 (succ x)
inter' rewrite equalityCommutative firstFactorDivides = inter
inter'' : firstFactor *N (divisionAlgResult.quot firstFactorDivision) (succ x)
inter'' rewrite equalityCommutative (addZeroRight (firstFactor *N (divisionAlgResult.quot firstFactorDivision))) = inter'
inter'' rewrite equalityCommutative (Semiring.sumZeroRight Semiring (firstFactor *N (divisionAlgResult.quot firstFactorDivision))) = inter'
p|ff*q : p firstFactor *N (divisionAlgResult.quot firstFactorDivision)
p|ff*q rewrite inter'' = p|x
p|ffOrQ : (p firstFactor) || (p divisionAlgResult.quot firstFactorDivision)
@@ -193,7 +197,7 @@ module IntegerFactorisation where
p1<p2 = ff1<ff2
a=p2rem2 : a p2 *N rem2
a=p2rem2 with divisionAlgResult.pr (factorisationNonunit.firstFactorDivision f2)
... | ff rewrite factorisationNonunit.firstFactorDivides f2 | addZeroRight (factorisationNonunit.firstFactor f2 *N divisionAlgResult.quot (factorisationNonunit.firstFactorDivision f2)) = equalityCommutative ff
... | ff rewrite factorisationNonunit.firstFactorDivides f2 | Semiring.sumZeroRight Semiring (factorisationNonunit.firstFactor f2 *N divisionAlgResult.quot (factorisationNonunit.firstFactorDivision f2)) = equalityCommutative ff
p1|second : (p1 p2) || (p1 rem2)
p1|second = primesArePrime {p1} {p2} {rem2} (factorisationNonunit.firstFactorPrime f1) lem
where
@@ -240,7 +244,7 @@ module IntegerFactorisation where
pr1 : (factorisationNonunit.firstFactor f1) *N (divisionAlgResult.quot div1) +N 0 a
pr1 rewrite equalityCommutative rem1=0 = divisionAlgResult.pr div1
pr1' : (factorisationNonunit.firstFactor f1) *N (divisionAlgResult.quot div1) a
pr1' rewrite equalityCommutative (addZeroRight ((factorisationNonunit.firstFactor f1) *N (divisionAlgResult.quot div1))) = pr1
pr1' rewrite equalityCommutative (Semiring.sumZeroRight Semiring ((factorisationNonunit.firstFactor f1) *N (divisionAlgResult.quot div1))) = pr1
div2 : divisionAlgResult (factorisationNonunit.firstFactor f2) a
div2 = factorisationNonunit.firstFactorDivision f2
rem2=0 : divisionAlgResult.rem div2 0
@@ -248,7 +252,7 @@ module IntegerFactorisation where
pr2 : (factorisationNonunit.firstFactor f2) *N (divisionAlgResult.quot div2) +N 0 a
pr2 rewrite equalityCommutative rem2=0 = divisionAlgResult.pr div2
pr2' : (factorisationNonunit.firstFactor f2) *N (divisionAlgResult.quot div2) a
pr2' rewrite equalityCommutative (addZeroRight ((factorisationNonunit.firstFactor f2) *N (divisionAlgResult.quot div2))) = pr2
pr2' rewrite equalityCommutative (Semiring.sumZeroRight Semiring ((factorisationNonunit.firstFactor f2) *N (divisionAlgResult.quot div2))) = pr2
pr : (factorisationNonunit.firstFactor f2) *N (divisionAlgResult.quot div2) (factorisationNonunit.firstFactor f1) *N (divisionAlgResult.quot div1)
pr = transitivity pr2' (equalityCommutative pr1')
pr' : (factorisationNonunit.firstFactor f1) *N (divisionAlgResult.quot div2) (factorisationNonunit.firstFactor f1) *N (divisionAlgResult.quot div1)

View File

@@ -14,7 +14,7 @@ open import Maybe
open import WithK
open import Semirings.Definition
module PrimeNumbers where
module Numbers.Primes.PrimeNumbers where
record divisionAlgResult (a : ) (b : ) : Set where
field

View File

@@ -7,7 +7,7 @@ open import Groups.Groups
open import Groups.Definition
open import Rings.Definition
open import Fields.Fields
open import PrimeNumbers
open import Numbers.Primes.PrimeNumbers
open import Setoids.Setoids
open import Setoids.Orders
open import Functions

View File

@@ -9,7 +9,7 @@ open import Groups.Lemmas
open import Groups.Definition
open import Rings.Definition
open import Fields.Fields
open import PrimeNumbers
open import Numbers.Primes.PrimeNumbers
open import Setoids.Setoids
open import Setoids.Orders
open import Functions

View File

@@ -5,9 +5,9 @@ open import Groups.Groups
open import Functions
open import Numbers.Naturals.Naturals
open import Numbers.Integers.Integers
open import IntegersModN
open import Numbers.Modulo.IntegersModN
open import Rings.Examples.Proofs
open import PrimeNumbers
open import Numbers.Primes.PrimeNumbers
module Rings.Examples.Examples where

View File

@@ -8,8 +8,8 @@ open import Orders
open import Rings.Definition
open import Numbers.Naturals.Naturals
open import Numbers.Integers.Integers
open import PrimeNumbers
open import IntegersModN
open import Numbers.Primes.PrimeNumbers
open import Numbers.Modulo.IntegersModN
module Rings.Examples.Proofs where
nToZn' : (n : ) (pr : 0 <N n) (x : ) n n pr