\documentclass[11pt]{amsart} \usepackage{geometry} \geometry{a4paper} \usepackage{graphicx} \usepackage{amssymb} \usepackage{epstopdf} \usepackage{hyperref} \usepackage{lmodern} % Reproducible builds \pdfinfoomitdate=1 \pdftrailerid{} \pdfsuppressptexinfo=-1 \DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \title{Tokyo 2016 Graduate School Entrance Exam} \author{Patrick Stevens} \date{16th March, 2017} \begin{document} \maketitle \tiny \begin{center} \url{https://www.patrickstevens.co.uk/misc/TokyoEntrance2016/TokyoEntrance2016.pdf} \end{center} \normalsize \section{Question 2} \subsection{Prove \texorpdfstring{that $S = 2\pi \int_{-1}^1 F(y, y') \ \mathrm{d}x$}{a certain integral form for S}} The surface may be parametrised as $$S(x, \theta) = (x, y(x) \cos(\theta), y(x) \sin(\theta))$$ where $\theta \in [0, 2\pi)$ and $x \in [-1,1]$. Hence $$\dfrac{\partial S}{\partial x} = (1, y'(x) \cos(\theta), y'(x) \sin(\theta))$$ and $$\dfrac{\partial S}{\partial \theta} = (0, -y(x) \sin(\theta), y(x) \cos(\theta))$$ so the surface element $$\mathrm{d}\Sigma = \left| \left(1, y'(x) \cos(\theta), y'(x) \sin(\theta) \right) \times (0, -y(x) \sin(\theta), y(x) \cos(\theta)) \right| \mathrm{d}x \mathrm{d}\theta$$ i.e. $$y \sqrt{1+(y')^2}$$ The integral is therefore $$\int_{0}^{2 \pi} \int_{-1}^1 y \sqrt{1+(y')^2} \mathrm{d}x \mathrm{d}\theta$$ as required. \subsection{Prove the first integral of the Euler-Lagrange equation} We know the Euler-Lagrange equation $$\dfrac{\partial F}{\partial y} = \dfrac{\mathrm{d}}{\mathrm{d}x} \dfrac{\partial F}{\partial y'}$$ Now, $$\frac{\mathrm{d}F}{\mathrm{d}{x}} = \dfrac{\partial F}{\partial y} \dfrac{\mathrm{d}y}{\mathrm{d}x} + \dfrac{\partial F}{\partial y'} \dfrac{\mathrm{d}y'}{\mathrm{d}x}$$ so substituting Euler-Lagrange into this: $$\frac{\mathrm{d}F}{\mathrm{d}{x}} = \dfrac{\mathrm{d}}{\mathrm{d}x} \left(\dfrac{\partial F}{\partial y'}\right) \dfrac{\mathrm{d}y}{\mathrm{d}x} + \dfrac{\partial F}{\partial y'} \dfrac{\mathrm{d}y'}{\mathrm{d}x}$$ Notice the right-hand side is just what we get by applying the product rule: it is $$\dfrac{\mathrm{d}}{\mathrm{d}x} \left( \dfrac{\partial F}{\partial y'} \dfrac{\mathrm{d}y}{\mathrm{d}x} \right)$$ The result follows now by simply integrating both sides with respect to $x$. \subsection{Solve the differential equation} Just substitute $F(y,y') = y \sqrt{1+(y')^2}$: $$y\sqrt{1+(y')^2} - y' \left[ \frac{1}{2} y (1+(y')^2)^{-1/2} \cdot 2 y'\right] = c$$ which can be simplified to $$y (1+(y')^2)^{-1/2} \left[ (1+(y')^2) -(y')^2\right] = c$$ i.e. $$y^2 - c^2 = (c y')^2$$ If $c=0$ then this is trivial: $y=0$. From now on, assume $c \not = 0$; then since $y$ is known to be positive, $c > 0$. Invert: $$\frac{c^2}{y^2-c^2} = \left(\frac{dx}{dy}\right)^2$$ so $$\dfrac{dx}{dy} = \pm \frac{c}{\sqrt{y^2-c^2}}$$ which is a standard integral: $$x = \pm c \log(y+\sqrt{y^2-c^2}) + K$$ Also $y(-1) = 2 = y(1)$, so $$\{1,-1\} = \{c \log(2+\sqrt{4-c^2}) + K, -c \log(2+\sqrt{4-c^2}) + K\}$$ which means $K = 0$. Then $$\exp\left(\pm \frac{x}{c}\right) = y+\sqrt{y^2-c^2}$$ Since $y(1) = 2$, we have $$\exp(\pm 1/c) = 2+\sqrt{4-c^2}$$ and in particular (since $c>0$) we have the $\pm$ on the left-hand side being positive; that is the expression $c$ is required to satisfy. Rearrange: $$y = \frac{c+\exp(2 \frac{x}{c})}{2 \exp\left(\frac{x}{c}\right)}$$ which completes the question. \section{Question 3} \subsection{Part 1} We must put one ball into each box. Then we are distributing $n-r$ balls freely among $r$ boxes, so the answer is $$\binom{n-r-1}{r-1}$$ (standard stars-and-bars result). \subsection{Part 2} Consider the $n$ black balls laid out in a line; we are interspersing the $m$ white balls among them. Equivalently, we have $n+1$ boxes (represented by the gaps between black balls) and we are trying to put $m$ balls into them. By stars-and-bars again, the answer is $\binom{n}{m-1}$. \subsection{Part 3} Condition on the colour of the first ball, and write $l$ for the length of the first run. Then $$P_{n,m}(r,s) = \frac{n}{n+m} \sum_{l=0}^{n} P_{n-l,m}(r-1, s) + \frac{m}{n+m} \sum_{l=0}^m P_{n, m-l}(r, s-1)$$ Also $P_{n,m}(0,s) = \chi[n=0] \chi[s=1]$ where $\chi$ is the indicator function, and $P_{n,m}(r,0) = \chi[m=0] \chi[r=1]$. \subsection{Part 4} \subsection{Part 5} If $m \leq n$, then the sum is $$\sum_{l=0}^m \binom{n}{l} \binom{m}{m-l}$$ which is the $x^m$ coefficient of the left-hand side and hence of the right-hand side. If $m > n$, then the sum is $$\sum_{l=0}^n \binom{n}{n-l} \binom{m}{l}$$ which is the $x^n$ coefficient of the left-hand side and hence of the right-hand side. For the second equation: this follows by setting $n \mapsto n-1$ in the above. \subsection{Part 6} \end{document}