Files
agdaproofs/Functions/Lemmas.agda
2020-04-18 17:47:27 +01:00

70 lines
4.6 KiB
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Functions.Definition
module Functions.Lemmas where
invertibleImpliesBijection : {a b : _} {A : Set a} {B : Set b} {f : A B} Invertible f Bijection f
Bijection.inj (invertibleImpliesBijection {a} {b} {A} {B} {f} record { inverse = inverse ; isLeft = isLeft ; isRight = isRight }) {x} {y} fx=fy = ans
where
bl : inverse (f x) inverse (f y)
bl = applyEquality inverse fx=fy
ans : x y
ans rewrite equalityCommutative (isRight x) | equalityCommutative (isRight y) = bl
Bijection.surj (invertibleImpliesBijection {a} {b} {A} {B} {f} record { inverse = inverse ; isLeft = isLeft ; isRight = isRight }) y = (inverse y , isLeft y)
bijectionImpliesInvertible : {a b : _} {A : Set a} {B : Set b} {f : A B} Bijection f Invertible f
Invertible.inverse (bijectionImpliesInvertible record { inj = inj ; surj = surj }) b = underlying (surj b)
Invertible.isLeft (bijectionImpliesInvertible {f = f} record { inj = inj ; surj = surj }) b with surj b
Invertible.isLeft (bijectionImpliesInvertible {f = f} record { inj = inj ; surj = surj }) b | a , prop = prop
Invertible.isRight (bijectionImpliesInvertible {f = f} record { inj = inj ; surj = surj }) a with surj (f a)
Invertible.isRight (bijectionImpliesInvertible {f = f} record { inj = property ; surj = surj }) a | a₁ , b = property b
injComp : {a b c : _} {A : Set a} {B : Set b} {C : Set c} {f : A B} {g : B C} Injection f Injection g Injection (g f)
injComp {f = f} {g} propF propG pr = propF (propG pr)
surjComp : {a b c : _} {A : Set a} {B : Set b} {C : Set c} {f : A B} {g : B C} Surjection f Surjection g Surjection (g f)
surjComp {f = f} {g} propF propG c with propG c
surjComp {f = f} {g} propF propG c | b , pr with propF b
surjComp {f = f} {g} propF propG c | b , pr | a , pr2 = a , pr'
where
pr' : g (f a) c
pr' rewrite pr2 = pr
bijectionComp : {a b c : _} {A : Set a} {B : Set b} {C : Set c} {f : A B} {g : B C} Bijection f Bijection g Bijection (g f)
Bijection.inj (bijectionComp bijF bijG) = injComp (Bijection.inj bijF) (Bijection.inj bijG)
Bijection.surj (bijectionComp bijF bijG) = surjComp (Bijection.surj bijF) (Bijection.surj bijG)
compInjRightInj : {a b c : _} {A : Set a} {B : Set b} {C : Set c} {f : A B} {g : B C} Injection (g f) Injection f
compInjRightInj {f = f} {g} property {x} {y} fx=fy = property (applyEquality g fx=fy)
compSurjLeftSurj : {a b c : _} {A : Set a} {B : Set b} {C : Set c} {f : A B} {g : B C} Surjection (g f) Surjection g
compSurjLeftSurj {f = f} {g} property b with property b
compSurjLeftSurj {f = f} {g} property b | a , b1 = f a , b1
injectionPreservedUnderExtensionalEq : {a b : _} {A : Set a} {B : Set b} {f g : A B} Injection f ({x : A} f x g x) Injection g
injectionPreservedUnderExtensionalEq {A = A} {B} {f} {g} property prop {x} {y} gx=gy = property (transitivity (prop {x}) (transitivity gx=gy (equalityCommutative (prop {y}))))
surjectionPreservedUnderExtensionalEq : {a b : _} {A : Set a} {B : Set b} {f g : A B} Surjection f ({x : A} f x g x) Surjection g
surjectionPreservedUnderExtensionalEq {f = f} {g} surj ext b with surj b
surjectionPreservedUnderExtensionalEq {f = f} {g} surj ext b | a , pr = a , transitivity (equalityCommutative ext) pr
bijectionPreservedUnderExtensionalEq : {a b : _} {A : Set a} {B : Set b} {f g : A B} Bijection f ({x : A} f x g x) Bijection g
Bijection.inj (bijectionPreservedUnderExtensionalEq record { inj = inj ; surj = surj } ext) = injectionPreservedUnderExtensionalEq inj ext
Bijection.surj (bijectionPreservedUnderExtensionalEq record { inj = inj ; surj = surj } ext) = surjectionPreservedUnderExtensionalEq surj ext
inverseIsInvertible : {a b : _} {A : Set a} {B : Set b} {f : A B} (inv : Invertible f) Invertible (Invertible.inverse inv)
Invertible.inverse (inverseIsInvertible {f = f} inv) = f
Invertible.isLeft (inverseIsInvertible {f = f} inv) b = Invertible.isRight inv b
Invertible.isRight (inverseIsInvertible {f = f} inv) a = Invertible.isLeft inv a
idIsBijective : {a : _} {A : Set a} Bijection (id {a} {A})
Bijection.inj idIsBijective pr = pr
Bijection.surj idIsBijective b = b , refl
functionCompositionExtensionallyAssociative : {a b c d : _} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (f : A B) (g : B C) (h : C D) (x : A) (h (g f)) x ((h g) f) x
functionCompositionExtensionallyAssociative f g h x = refl