Files
agdaproofs/Rings/EuclideanDomains/Examples.agda
2020-01-05 15:06:35 +00:00

31 lines
1.6 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Definition
open import Numbers.Naturals.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Rings.EuclideanDomains.Definition
open import Fields.Fields
open import Fields.Lemmas
module Rings.EuclideanDomains.Examples where
polynomialField : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} {R : Ring S _+_ _*_} (F : Field R) (Setoid.__ S (Ring.1R R) (Ring.0R R) False) EuclideanDomain R
EuclideanDomain.isIntegralDomain (polynomialField F 1!=0) = fieldIsIntDom F 1!=0
EuclideanDomain.norm (polynomialField F _) a!=0 = zero
EuclideanDomain.normSize (polynomialField F _) a!=0 b!=0 c b=ac = inr refl
DivisionAlgorithmResult.quotient (EuclideanDomain.divisionAlg (polynomialField {_*_ = _*_} F _) {a = a} {b} a!=0 b!=0) with Field.allInvertible F b b!=0
... | bInv , prB = a * bInv
DivisionAlgorithmResult.rem (EuclideanDomain.divisionAlg (polynomialField F _) a!=0 b!=0) = Field.0F F
DivisionAlgorithmResult.remSmall (EuclideanDomain.divisionAlg (polynomialField {S = S} F _) a!=0 b!=0) = inl (Equivalence.reflexive (Setoid.eq S))
DivisionAlgorithmResult.divAlg (EuclideanDomain.divisionAlg (polynomialField {S = S} {R = R} F _) {a = a} {b = b} a!=0 b!=0) with Field.allInvertible F b b!=0
... | bInv , prB = transitive (transitive (transitive (symmetric identIsIdent) (transitive *Commutative (*WellDefined reflexive (symmetric prB)))) *Associative) (symmetric identRight)
where
open Setoid S
open Equivalence eq
open Ring R
open Group additiveGroup