Files
agdaproofs/Setoids/Union/Definition.agda
2020-02-03 07:09:51 +00:00

20 lines
806 B
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Sets.EquivalenceRelations
open import Setoids.Setoids
module Setoids.Union.Definition {a b : _} {A : Set a} (S : Setoid {a} {b} A) where
open Setoid S
open Equivalence eq
open import Setoids.Subset S
unionPredicate : {c d : _} {pred1 : A Set c} {pred2 : A Set d} (s1 : subset pred1) (s2 : subset pred2) A Set (c d)
unionPredicate {pred1 = pred1} {pred2} s1 s2 a = pred1 a || pred2 a
union : {c d : _} {pred1 : A Set c} {pred2 : A Set d} (s1 : subset pred1) (s2 : subset pred2) subset (unionPredicate s1 s2)
union s1 s2 {x1} {x2} x1=x2 (inl x) = inl (s1 x1=x2 x)
union s1 s2 {x1} {x2} x1=x2 (inr x) = inr (s2 x1=x2 x)