Files
agdaproofs/Vectors/VectorSpace.agda
2019-11-16 15:06:57 +00:00

25 lines
916 B
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Homomorphisms.Definition
open import Groups.Definition
open import Groups.Abelian.Definition
open import Numbers.Naturals.Naturals
open import Setoids.Orders
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Modules.Definition
open import Fields.Fields
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Vectors.VectorSpace {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+R_ : A A A} {_*_ : A A A} (R : Ring S _+R_ _*_) {m n : _} {M : Set m} {T : Setoid {m} {n} M} {_+_ : M M M} {G' : Group T _+_} (G : AbelianGroup G') (_·_ : A M M) where
record VectorSpace : Set (lsuc a b m n) where
field
isModule : Module R G _·_
isField : Field R