mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-11 22:58:40 +00:00
25 lines
916 B
Agda
25 lines
916 B
Agda
{-# OPTIONS --safe --warning=error --without-K #-}
|
|
|
|
open import LogicalFormulae
|
|
open import Groups.Groups
|
|
open import Groups.Homomorphisms.Definition
|
|
open import Groups.Definition
|
|
open import Groups.Abelian.Definition
|
|
open import Numbers.Naturals.Naturals
|
|
open import Setoids.Orders
|
|
open import Setoids.Setoids
|
|
open import Functions
|
|
open import Sets.EquivalenceRelations
|
|
open import Rings.Definition
|
|
open import Modules.Definition
|
|
open import Fields.Fields
|
|
|
|
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
|
|
|
module Vectors.VectorSpace {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+R_ : A → A → A} {_*_ : A → A → A} (R : Ring S _+R_ _*_) {m n : _} {M : Set m} {T : Setoid {m} {n} M} {_+_ : M → M → M} {G' : Group T _+_} (G : AbelianGroup G') (_·_ : A → M → M) where
|
|
|
|
record VectorSpace : Set (lsuc a ⊔ b ⊔ m ⊔ n) where
|
|
field
|
|
isModule : Module R G _·_
|
|
isField : Field R
|