Files
agdaproofs/Groups/Actions/Stabiliser.agda
2019-11-19 19:56:01 +00:00

41 lines
1.6 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Sets.FinSet
open import Groups.Definition
open import Groups.Lemmas
open import Groups.Groups
open import Groups.Subgroups.Definition
open import Groups.Homomorphisms.Definition
open import Groups.Actions.Definition
open import Groups.Groups2
open import Sets.EquivalenceRelations
open import Groups.Actions.Definition
module Groups.Actions.Stabiliser {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (act : GroupAction G T) where
open GroupAction act
open Setoid T
stabiliserPred : (x : B) (g : A) Set d
stabiliserPred x g = (action g x) x
stabiliserWellDefined : (x : B) {g h : A} Setoid.__ S g h (stabiliserPred x g) stabiliserPred x h
stabiliserWellDefined x {g} {h} g=h gx=x = transitive (actionWellDefined1 (Equivalence.symmetric (Setoid.eq S) g=h)) gx=x
where
open Equivalence eq
stabiliserSubgroup : (x : B) subgroup G (stabiliserWellDefined x)
_&_&_.one (stabiliserSubgroup x) gx=x hx=x = transitive associativeAction (transitive (actionWellDefined2 hx=x) gx=x)
where
open Equivalence eq
_&_&_.two (stabiliserSubgroup x) = identityAction
_&_&_.three (stabiliserSubgroup x) {g = g} gx=x = transitive (transitive (transitive (actionWellDefined2 (symmetric gx=x)) (symmetric associativeAction)) (actionWellDefined1 (invLeft {g}))) identityAction
where
open Equivalence eq
open Group G