Files
agdaproofs/Rings/EuclideanDomains/Lemmas.agda
2019-12-23 10:26:20 +00:00

46 lines
1.6 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Homomorphisms.Definition
open import Groups.Definition
open import Numbers.Naturals.Definition
open import Numbers.Naturals.Order
open import Setoids.Orders
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Rings.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Rings.IntegralDomains.Definition
open import Rings.IntegralDomains.Examples
open import Rings.EuclideanDomains.Definition
open import Fields.Fields
open import WellFoundedInduction
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.EuclideanDomains.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} {R : Ring S _+_ _*_} (E : EuclideanDomain R) where
open import Rings.PrincipalIdealDomains.Definition (EuclideanDomain.isIntegralDomain E)
open import Rings.Ideals.Principal.Definition R
open import Rings.Divisible.Definition R
open Setoid S
open Ring R
open Equivalence eq
euclideanDomainIsPid : {c : _} PrincipalIdealDomain {c}
euclideanDomainIsPid {pred = pred} ideal = {!!}
-- We definitely need to be able to decide equality in order to deduce this; otherwise we can't tell the difference
-- between "everything is 0" and "something is nonzero", and the proofs are genuinely different in the two cases.
where
r : A
r = {!!}
r!=0 : (r 0R) False
r!=0 = {!!}
predR : pred r
predR = {!!}
sr : (s : A) r s
sr = EuclideanDomain.divisionAlg r!=0 s!=0 ?