Files
agdaproofs/Groups/Groups2.agda
2019-08-18 10:35:15 +01:00

176 lines
16 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error #-}
open import Groups.Groups
open import Groups.GroupDefinition
open import Orders
open import Numbers.Integers
open import Setoids.Setoids
open import LogicalFormulae
open import Sets.FinSet
open import Functions
open import Numbers.Naturals
open import IntegersModN
open import Rings.Examples.Examples
open import PrimeNumbers
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Groups.Groups2 where
data GroupHomImageElement {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A A A} {_+B_ : B B B} {G : Group S _+A_} {H : Group T _+B_} {f : A B} (fHom : GroupHom G H f) : Set (a b c d) where
ofElt : (x : A) GroupHomImageElement fHom
imageGroupSetoid : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A A A} {_+B_ : B B B} {G : Group S _+A_} {H : Group T _+B_} {f : A B} (fHom : GroupHom G H f) Setoid (GroupHomImageElement fHom)
(imageGroupSetoid {T = T} {f = f} fHom Setoid. ofElt b1) (ofElt b2) = Setoid.__ T (f b1) (f b2)
Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq (imageGroupSetoid {T = T} fHom))) {ofElt b1} = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq T))
Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq (imageGroupSetoid {T = T} fHom))) {ofElt b1} {ofElt b2} = Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq T))
Transitive.transitive (Equivalence.transitiveEq (Setoid.eq (imageGroupSetoid {T = T} fHom))) {ofElt b1} {ofElt b2} {ofElt b3} = Transitive.transitive (Equivalence.transitiveEq (Setoid.eq T))
imageGroupOp : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A A A} {_+B_ : B B B} {G : Group S _+A_} {H : Group T _+B_} {f : A B} (fHom : GroupHom G H f) GroupHomImageElement fHom GroupHomImageElement fHom GroupHomImageElement fHom
imageGroupOp {_+A_ = _+A_} fHom (ofElt a) (ofElt b) = ofElt (a +A b)
imageGroup : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A A A} {_+B_ : B B B} {G : Group S _+A_} {H : Group T _+B_} {f : A B} (fHom : GroupHom G H f) Group (imageGroupSetoid fHom) (imageGroupOp fHom)
Group.wellDefined (imageGroup {T = T} {_+A_ = _+A_} {H = H} {f = f} fHom) {ofElt x} {ofElt y} {ofElt a} {ofElt b} x~a y~b = ans
where
open Setoid T
open Transitive (Equivalence.transitiveEq eq)
open Symmetric (Equivalence.symmetricEq eq)
ans : f (x +A y) f (a +A b)
ans = transitive (GroupHom.groupHom fHom) (transitive (Group.wellDefined H x~a y~b) (symmetric (GroupHom.groupHom fHom)))
Group.identity (imageGroup {G = G} fHom) = ofElt (Group.identity G)
Group.inverse (imageGroup {G = G} fHom) (ofElt a) = ofElt (Group.inverse G a)
Group.multAssoc (imageGroup {G = G} fHom) {ofElt a} {ofElt b} {ofElt c} = GroupHom.wellDefined fHom (Group.multAssoc G)
Group.multIdentRight (imageGroup {G = G} fHom) {ofElt a} = GroupHom.wellDefined fHom (Group.multIdentRight G)
Group.multIdentLeft (imageGroup {G = G} fHom) {ofElt a} = GroupHom.wellDefined fHom (Group.multIdentLeft G)
Group.invLeft (imageGroup {G = G} fHom) {ofElt a} = GroupHom.wellDefined fHom (Group.invLeft G)
Group.invRight (imageGroup {G = G} fHom) {ofElt a} = GroupHom.wellDefined fHom (Group.invRight G)
groupHomImageInclusion : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+G_ : A A A} {_+H_ : B B B} {G : Group S _+G_} {H : Group T _+H_} {f : A B} (fHom : GroupHom G H f) GroupHomImageElement fHom B
groupHomImageInclusion {f = f} fHom (ofElt x) = f x
groupHomImageIncludes : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+G_ : A A A} {_+H_ : B B B} {G : Group S _+G_} {H : Group T _+H_} {f : A B} (fHom : GroupHom G H f) GroupHom (imageGroup fHom) H (groupHomImageInclusion fHom)
GroupHom.groupHom (groupHomImageIncludes fHom) {ofElt x} {ofElt y} = GroupHom.groupHom fHom
GroupHom.wellDefined (groupHomImageIncludes fHom) {ofElt x} {ofElt y} x~y = x~y
groupHomImageIsSubgroup : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+G_ : A A A} {_+H_ : B B B} {G : Group S _+G_} {H : Group T _+H_} {f : A B} (fHom : GroupHom G H f) Subgroup H (imageGroup fHom) (groupHomImageIncludes fHom)
Subgroup.fInj (groupHomImageIsSubgroup {S = S} {T} {_+G_} {_+H_} {G} {H} {f} fHom) = record { wellDefined = λ {x} {y} GroupHom.wellDefined (groupHomImageIncludes fHom) {x} {y} ; injective = λ {x} {y} inj {x} {y} }
where
inj : {x y : GroupHomImageElement fHom} (Setoid.__ T (groupHomImageInclusion fHom x) (groupHomImageInclusion fHom y)) Setoid.__ (imageGroupSetoid fHom) x y
inj {ofElt x} {ofElt y} x~y = x~y
groupFirstIsomorphismIso : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+G_ : A A A} {_+H_ : B B B} {G : Group S _+G_} {H : Group T _+H_} {f : A B} (fHom : GroupHom G H f) GroupHomImageElement fHom A
groupFirstIsomorphismIso fHom (ofElt a) = a
groupFirstIsomorphismIsoHom : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+G_ : A A A} {_+H_ : B B B} {G : Group S _+G_} {H : Group T _+H_} {f : A B} (fHom : GroupHom G H f) GroupHom (imageGroup fHom) (quotientGroup G fHom) (groupFirstIsomorphismIso fHom)
GroupHom.groupHom (groupFirstIsomorphismIsoHom {G = G} fHom) {ofElt a} {ofElt b} = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq (quotientGroupSetoid G fHom)))
GroupHom.wellDefined (groupFirstIsomorphismIsoHom {T = T} {_+G_ = _+G_} {G = G} {H = H} {f = f} fHom) {ofElt a} {ofElt b} pr = ans
where
open Setoid T
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
open Symmetric (Equivalence.symmetricEq (Setoid.eq T))
open Reflexive (Equivalence.reflexiveEq (Setoid.eq T))
ans : f (a +G Group.inverse G b) Group.identity H
ans = transitive (GroupHom.groupHom fHom) (transitive (Group.wellDefined H pr reflexive) (transitive (symmetric (GroupHom.groupHom fHom)) (transitive (GroupHom.wellDefined fHom (Group.invRight G)) (imageOfIdentityIsIdentity fHom))))
groupFirstIsomorphismTheorem' : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+G_ : A A A} {_+H_ : B B B} {G : Group S _+G_} {H : Group T _+H_} {f : A B} (fHom : GroupHom G H f) GroupIso (imageGroup fHom) (quotientGroup G fHom) (groupFirstIsomorphismIso fHom)
GroupIso.groupHom (groupFirstIsomorphismTheorem' fHom) = groupFirstIsomorphismIsoHom fHom
SetoidInjection.wellDefined (SetoidBijection.inj (GroupIso.bij (groupFirstIsomorphismTheorem' fHom))) {x} {y} x~y = GroupHom.wellDefined (groupFirstIsomorphismIsoHom fHom) {x} {y} x~y
SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij (groupFirstIsomorphismTheorem' {T = T} {H = H} {f = f} fHom))) {ofElt a} {ofElt b} pr = need
where
open Setoid T
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
open Symmetric (Equivalence.symmetricEq (Setoid.eq T))
open Reflexive (Equivalence.reflexiveEq (Setoid.eq T))
need : f a f b
need = transferToRight H (transitive (transitive (Group.wellDefined H reflexive (symmetric (homRespectsInverse fHom))) (symmetric (GroupHom.groupHom fHom))) pr)
SetoidSurjection.wellDefined (SetoidBijection.surj (GroupIso.bij (groupFirstIsomorphismTheorem' fHom))) {x} {y} x~y = GroupHom.wellDefined (groupFirstIsomorphismIsoHom fHom) {x} {y} x~y
SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (groupFirstIsomorphismTheorem' {G = G} fHom))) {a} = ofElt a , Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq (quotientGroupSetoid G fHom)))
groupFirstIsomorphismTheorem : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+G_ : A A A} {_+H_ : B B B} {G : Group S _+G_} {H : Group T _+H_} {f : A B} (fHom : GroupHom G H f) GroupsIsomorphic (imageGroup fHom) (quotientGroup G fHom)
groupFirstIsomorphismTheorem fHom = record { isomorphism = groupFirstIsomorphismIso fHom ; proof = groupFirstIsomorphismTheorem' fHom }
record NormalSubgroup {a} {b} {c} {d} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) (H : Group T _·B_) {f : B A} (hom : GroupHom H G f) : Set (a b c d) where
open Setoid S
field
subgroup : Subgroup G H hom
normal : {g : A} {h : B} Sg B (λ fromH (g ·A (f h)) ·A (Group.inverse G g) f fromH)
data GroupKernelElement {a} {b} {c} {d} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {f : A B} (hom : GroupHom G H f) : Set (a b c d) where
kerOfElt : (x : A) (Setoid.__ T (f x) (Group.identity H)) GroupKernelElement G hom
groupKernel : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {f : A B} (hom : GroupHom G H f) Setoid (GroupKernelElement G hom)
Setoid.__ (groupKernel {S = S} G {H} {f} fHom) (kerOfElt x fx=0) (kerOfElt y fy=0) = Setoid.__ S x y
Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq (groupKernel {S = S} G {H} {f} fHom))) {kerOfElt x x₁} = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq S))
Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq (groupKernel {S = S} G {H} {f} fHom))) {kerOfElt x prX} {kerOfElt y prY} = Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S))
Transitive.transitive (Equivalence.transitiveEq (Setoid.eq (groupKernel {S = S} G {H} {f} fHom))) {kerOfElt x prX} {kerOfElt y prY} {kerOfElt z prZ} = Transitive.transitive (Equivalence.transitiveEq (Setoid.eq S))
groupKernelGroupOp : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {f : A B} (hom : GroupHom G H f) (GroupKernelElement G hom) (GroupKernelElement G hom) (GroupKernelElement G hom)
groupKernelGroupOp {T = T} {_·A_ = _+A_} G {H = H} hom (kerOfElt x prX) (kerOfElt y prY) = kerOfElt (x +A y) (transitive (GroupHom.groupHom hom) (transitive (Group.wellDefined H prX prY) (Group.multIdentLeft H)))
where
open Setoid T
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
groupKernelGroup : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {f : A B} (hom : GroupHom G H f) Group (groupKernel G hom) (groupKernelGroupOp G hom)
Group.wellDefined (groupKernelGroup G fHom) {kerOfElt x prX} {kerOfElt y prY} {kerOfElt a prA} {kerOfElt b prB} = Group.wellDefined G
Group.identity (groupKernelGroup G fHom) = kerOfElt (Group.identity G) (imageOfIdentityIsIdentity fHom)
Group.inverse (groupKernelGroup {T = T} G {H = H} fHom) (kerOfElt x prX) = kerOfElt (Group.inverse G x) (transitive (homRespectsInverse fHom) (transitive (inverseWellDefined H prX) (invIdentity H)))
where
open Setoid T
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
Group.multAssoc (groupKernelGroup {S = S} {_·A_ = _·A_} G fHom) {kerOfElt x prX} {kerOfElt y prY} {kerOfElt z prZ} = Group.multAssoc G
Group.multIdentRight (groupKernelGroup G fHom) {kerOfElt x prX} = Group.multIdentRight G
Group.multIdentLeft (groupKernelGroup G fHom) {kerOfElt x prX} = Group.multIdentLeft G
Group.invLeft (groupKernelGroup G fHom) {kerOfElt x prX} = Group.invLeft G
Group.invRight (groupKernelGroup G fHom) {kerOfElt x prX} = Group.invRight G
injectionFromKernelToG : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {f : A B} (hom : GroupHom G H f) GroupKernelElement G hom A
injectionFromKernelToG G hom (kerOfElt x _) = x
injectionFromKernelToGIsHom : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {f : A B} (hom : GroupHom G H f) GroupHom (groupKernelGroup G hom) G (injectionFromKernelToG G hom)
GroupHom.groupHom (injectionFromKernelToGIsHom {S = S} G hom) {kerOfElt x prX} {kerOfElt y prY} = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq S))
GroupHom.wellDefined (injectionFromKernelToGIsHom G hom) {kerOfElt x prX} {kerOfElt y prY} i = i
groupKernelGroupIsSubgroup : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {f : A B} (hom : GroupHom G H f) Subgroup G (groupKernelGroup G hom) (injectionFromKernelToGIsHom G hom)
Subgroup.fInj (groupKernelGroupIsSubgroup {S = S} {T = T} G {f = f} hom) = record { wellDefined = λ {x} {y} GroupHom.wellDefined (injectionFromKernelToGIsHom G hom) {x} {y} ; injective = λ {x} {y} inj {x} {y} }
where
inj : {x : GroupKernelElement G hom} {y : GroupKernelElement G hom} Setoid.__ S (injectionFromKernelToG G hom x) (injectionFromKernelToG G hom y) Setoid.__ (groupKernel G hom) x y
inj {kerOfElt x prX} {kerOfElt y prY} = id
groupKernelGroupIsNormalSubgroup : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {f : A B} (hom : GroupHom G H f) NormalSubgroup G (groupKernelGroup G hom) (injectionFromKernelToGIsHom G hom)
NormalSubgroup.subgroup (groupKernelGroupIsNormalSubgroup G hom) = groupKernelGroupIsSubgroup G hom
NormalSubgroup.normal (groupKernelGroupIsNormalSubgroup {S = S} {T = T} {_·A_ = _·A_} G {H = H} {f = f} hom) {g} {kerOfElt h prH} = kerOfElt ((g ·A h) ·A Group.inverse G g) ans , Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq S))
where
open Setoid T
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
open Reflexive (Equivalence.reflexiveEq (Setoid.eq T))
open Symmetric (Equivalence.symmetricEq (Setoid.eq T))
ans : f ((g ·A h) ·A Group.inverse G g) Group.identity H
ans = transitive (GroupHom.groupHom hom) (transitive (Group.wellDefined H (GroupHom.groupHom hom) reflexive) (transitive (Group.wellDefined H (Group.wellDefined H reflexive prH) reflexive) (transitive (Group.wellDefined H (Group.multIdentRight H) reflexive) (transitive (symmetric (GroupHom.groupHom hom)) (transitive (GroupHom.wellDefined hom (Group.invRight G)) (imageOfIdentityIsIdentity hom))))))
abelianGroupSubgroupIsNormal : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A A A} {_+B_ : B B B} {underG : Group S _+A_} (G : AbelianGroup underG) {H : Group T _+B_} {f : B A} {hom : GroupHom H underG f} (s : Subgroup underG H hom) NormalSubgroup underG H hom
NormalSubgroup.subgroup (abelianGroupSubgroupIsNormal G H) = H
NormalSubgroup.normal (abelianGroupSubgroupIsNormal {S = S} {underG = G} record { commutative = commutative } H) {g} {h} = h , transitive (wellDefined commutative reflexive) (transitive (symmetric multAssoc) (transitive (wellDefined reflexive invRight) multIdentRight))
where
open Setoid S
open Group G
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S))
open Transitive (Equivalence.transitiveEq (Setoid.eq S))
open Symmetric (Equivalence.symmetricEq (Setoid.eq S))
trivialGroup : Group (reflSetoid (FinSet 1)) λ _ _ fzero
Group.wellDefined trivialGroup _ _ = refl
Group.identity trivialGroup = fzero
Group.inverse trivialGroup _ = fzero
Group.multAssoc trivialGroup = refl
Group.multIdentRight trivialGroup {fzero} = refl
Group.multIdentRight trivialGroup {fsucc ()}
Group.multIdentLeft trivialGroup {fzero} = refl
Group.multIdentLeft trivialGroup {fsucc ()}
Group.invLeft trivialGroup = refl
Group.invRight trivialGroup = refl
identityHom : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+A_ : A A A} (G : Group S _+A_) GroupHom G G id
GroupHom.groupHom (identityHom {S = S} G) = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq S))
GroupHom.wellDefined (identityHom G) = id