Files
agdaproofs/Rings/UniqueFactorisationDomains/Lemmas.agda
2020-04-10 09:24:53 +01:00

58 lines
3.4 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Rings.Definition
open import Rings.IntegralDomains.Definition
open import Vectors
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Numbers.Naturals.Definition
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.UniqueFactorisationDomains.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) where
open import Rings.Units.Definition R
open import Rings.Irreducibles.Definition intDom
open import Rings.Associates.Definition intDom
open import Rings.Primes.Definition intDom
open import Rings.Divisible.Definition R
open import Rings.Divisible.Lemmas R
open import Rings.UniqueFactorisationDomains.Definition intDom
open Ring R
open Setoid S
open Equivalence eq
ufdImpliesUfd' : UFD UFD'
UFD'.factorisation (ufdImpliesUfd' x) = UFD.factorisation x
Prime.isPrime (UFD'.irreduciblesArePrime (ufdImpliesUfd' ufd) {r} irreducible) a b (s , ab=rs) rNotDivA = {!!}
where
-- we can't factorise a, it might be a unit :(
factA : Factorisation {a} (λ p rNotDivA (divisibleWellDefined reflexive (symmetric p) (everythingDividesZero r))) {!!}
factA = UFD.factorisation ufd {a} {!!} {!!}
fact1 : Factorisation {r} {!!} {!!}
fact1 = {!!}
fact2 : Factorisation {r} {!!} {!!}
fact2 = {!!}
Prime.nonzero (UFD'.irreduciblesArePrime (ufdImpliesUfd' x) irreducible) = Irreducible.nonzero irreducible
Prime.nonunit (UFD'.irreduciblesArePrime (ufdImpliesUfd' x) irreducible) = Irreducible.nonunit irreducible
private
lemma2 : UFD' {r : A} .(nonzero : (r 0R) False) .(nonunit : (Unit r) False) (f1 f2 : Factorisation {r} nonzero nonunit) factorisationEquality f1 f2
lemma2 x nonzero nonunit record { len = lenA ; factorise = factoriseA ; factoriseIsFactorisation = factoriseIsFactorisationA ; factoriseIsIrreducibles = factoriseIsIrreduciblesA ; distinct = distinctA } record { len = lenB ; factorise = factoriseB ; factoriseIsFactorisation = factoriseIsFactorisationB ; factoriseIsIrreducibles = factoriseIsIrreduciblesB ; distinct = distinctB } with DecideEquality lenA lenB
lemma2 x nonzero nonunit record { len = zero ; factorise = [] ; factoriseIsFactorisation = factoriseIsFactorisationA ; factoriseIsIrreducibles = factoriseIsIrreduciblesA ; distinct = distinctA } record { len = .0 ; factorise = [] ; factoriseIsFactorisation = factoriseIsFactorisationB ; factoriseIsIrreducibles = factoriseIsIrreduciblesB ; distinct = distinctB } | inl refl = record {}
lemma2 ufd' {r} nonzero nonunit record { len = (succ len) ; factorise = (a1 ,, n1) ,- factoriseA ; factoriseIsFactorisation = factoriseIsFactorisationA ; factoriseIsIrreducibles = factoriseIsIrreduciblesA ; distinct = distinctA } record { len = .(succ len) ; factorise = factoriseB ; factoriseIsFactorisation = factoriseIsFactorisationB ; factoriseIsIrreducibles = factoriseIsIrreduciblesB ; distinct = distinctB } | inl refl = {!!}
where
a1Prime : Prime a1
a1Prime = UFD'.irreduciblesArePrime ufd' (_&&_.fst factoriseIsIrreduciblesA)
a1DivR : a1 r
a1DivR = {!!}
... | inr neq = {!!}
ufd'ImpliesUfd : UFD' UFD
UFD.factorisation (ufd'ImpliesUfd x) = UFD'.factorisation x
UFD.uniqueFactorisation (ufd'ImpliesUfd x) {r} nonzero nonunit f1 f2 = lemma2 x nonzero nonunit f1 f2