Files
agdaproofs/Rings/UniqueFactorisationDomains/Definition.agda
2020-04-10 09:24:53 +01:00

59 lines
3.2 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Rings.Definition
open import Rings.IntegralDomains.Definition
open import Vectors
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Numbers.Naturals.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.UniqueFactorisationDomains.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) where
open import Rings.Units.Definition R
open import Rings.Irreducibles.Definition intDom
open import Rings.Associates.Definition intDom
open import Rings.Primes.Definition intDom
open Ring R
open Setoid S
private
power : A A
power x zero = 1R
power x (succ n) = x * power x n
allDistinct : {n : } Vec A n Set (a b)
allDistinct [] = True'
allDistinct (x ,- xs) = (allDistinct xs) && vecAllTrue (λ n (n x) False) xs
record Factorisation {r : A} .(nonzero : (r 0R) False) .(nonunit : (Unit r) False) : Set (a b) where
field
len :
factorise : Vec (A && ) len
factoriseIsFactorisation : vecFold (λ x y y * power (_&&_.fst x) (succ (_&&_.snd x))) 1R factorise r
factoriseIsIrreducibles : vecAllTrue Irreducible (vecMap _&&_.fst factorise)
distinct : allDistinct (vecMap _&&_.fst factorise)
private
equality : {n : } (v1 v2 : Vec (A && ) n) Set (a b)
equality [] [] = True'
equality {succ n} ((a ,, an) ,- v1) v2 = Sg (λ index Sg (index <N succ n) (λ i<n (Associates (_&&_.fst (vecIndex v2 index i<n)) a) && ((_&&_.snd (vecIndex v2 index i<n) an) && equality v1 (vecDelete index i<n v2))))
factorisationEquality : {r : A} .{nonzero : (r 0R) False} .{nonunit : (Unit r) False} Factorisation nonzero nonunit Factorisation nonzero nonunit Set (a b)
factorisationEquality record { len = lenA ; factorise = factoriseA ; factoriseIsFactorisation = factoriseIsFactorisationA ; factoriseIsIrreducibles = factoriseIsIrreduciblesA ; distinct = distinctA } record { len = lenB ; factorise = factoriseB ; factoriseIsFactorisation = factoriseIsFactorisationB ; factoriseIsIrreducibles = factoriseIsIrreduciblesB ; distinct = distinctB } with DecideEquality lenA lenB
factorisationEquality record { len = a ; factorise = factoriseA } record { len = .a ; factorise = factoriseB } | inl refl = equality factoriseA factoriseB
factorisationEquality record { len = a ; factorise = factoriseA } record { len = b ; factorise = factoriseB } | inr _ = False'
record UFD : Set (a b) where
field
factorisation : {r : A} (nonzero : (r 0R) False) (nonunit : (Unit r) False) Factorisation nonzero nonunit
uniqueFactorisation : {r : A} (nonzero : (r 0R) False) (nonunit : (Unit r) False) (f1 f2 : Factorisation nonzero nonunit) factorisationEquality f1 f2
record UFD' : Set (a b) where
field
factorisation : {r : A} (nonzero : (r 0R) False) (nonunit : (Unit r) False) Factorisation nonzero nonunit
irreduciblesArePrime : {r : A} Irreducible r Prime r