Files
agdaproofs/Rings/Polynomial/Multiplication.agda
2020-04-18 17:47:27 +01:00

151 lines
20 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Definition
open import Setoids.Setoids
open import Functions.Definition
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Lists.Lists
module Rings.Polynomial.Multiplication {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} (R : Ring S _+_ _*_) where
open Ring R
open Group additiveGroup
open import Groups.Polynomials.Definition additiveGroup
open import Groups.Polynomials.Group additiveGroup
open Setoid S
open Equivalence eq
_*P_ : NaivePoly NaivePoly NaivePoly
[] *P b = []
(x :: a) *P [] = []
(x :: a) *P (y :: b) = (x * y) :: (((map (x *_) b) +P (map (y *_) a)) +P (0R :: (a *P b)))
abstract
+PCommutative : {x y : NaivePoly} polysEqual (x +P y) (y +P x)
+PCommutative {x} {y} = comm (record { commutative = groupIsAbelian }) {x} {y}
p*Commutative : {a b : NaivePoly} polysEqual (a *P b) (b *P a)
p*Commutative {[]} {[]} = record {}
p*Commutative {[]} {x :: b} = record {}
p*Commutative {x :: a} {[]} = record {}
p*Commutative {x :: xs} {y :: ys} = *Commutative ,, +PwellDefined (+PCommutative {map (_*_ x) ys} {map (_*_ y) xs}) (reflexive ,, p*Commutative {xs} {ys})
zeroTimes1 : {a : NaivePoly} (c : A) (c 0G) polysEqual (map (_*_ c) a) []
zeroTimes1 {[]} c c=0 = record {}
zeroTimes1 {x :: a} c c=0 = transitive (transitive *Commutative (*WellDefined reflexive c=0)) (timesZero {x}) ,, zeroTimes1 {a} c c=0
zeroTimes2 : {a : NaivePoly} (c : A) polysEqual a [] polysEqual (map (_*_ c) a) []
zeroTimes2 {[]} c a=0 = record {}
zeroTimes2 {x :: a} c (fst ,, snd) = transitive (*WellDefined reflexive fst) (timesZero {c}) ,, zeroTimes2 {a} c snd
mapWellDefined : (a c : A) (bs : NaivePoly) (a c) polysEqual (map (_*_ a) bs) (map (_*_ c) bs)
mapWellDefined a c [] a=c = record {}
mapWellDefined a c (x :: bs) a=c = *WellDefined a=c reflexive ,, mapWellDefined a c bs a=c
mapWellDefined' : (a : A) (bs cs : NaivePoly) polysEqual bs cs polysEqual (map (_*_ a) bs) (map (_*_ a) cs)
mapWellDefined' a [] [] bs=cs = record {}
mapWellDefined' a [] (x :: cs) (fst ,, snd) = transitive (*WellDefined reflexive fst) (timesZero {a}) ,, Equivalence.symmetric (Setoid.eq naivePolySetoid) (zeroTimes2 {cs} a (Equivalence.symmetric (Setoid.eq naivePolySetoid) snd))
mapWellDefined' a (x :: bs) [] (fst ,, snd) = transitive (*WellDefined reflexive fst) (timesZero {a}) ,, zeroTimes2 {bs} a snd
mapWellDefined' a (b :: bs) (c :: cs) (fst ,, snd) = *WellDefined reflexive fst ,, mapWellDefined' a bs cs snd
*PwellDefinedL : {a b c : NaivePoly} polysEqual a c polysEqual (a *P b) (c *P b)
*PwellDefinedL {[]} {[]} {[]} a=c = record {}
*PwellDefinedL {[]} {[]} {x :: c} a=c = record {}
*PwellDefinedL {[]} {x :: b} {[]} a=c = record {}
*PwellDefinedL {[]} {b :: bs} {c :: cs} (fst ,, snd) = transitive (transitive *Commutative (*WellDefined reflexive fst)) (timesZero {b}) ,, Equivalence.transitive (Setoid.eq naivePolySetoid) (Equivalence.transitive (Setoid.eq naivePolySetoid) {_} {(map (_*_ c) bs) +P (0G :: (cs *P bs))} (Equivalence.transitive (Setoid.eq naivePolySetoid) {_} {[] +P (0G :: (cs *P bs))} (reflexive ,, ans) (+PwellDefined (Equivalence.symmetric (Setoid.eq naivePolySetoid) (zeroTimes1 {bs} c fst)) (Equivalence.reflexive (Setoid.eq naivePolySetoid) {0G :: (cs *P bs)}))) (+PwellDefined (Equivalence.symmetric (Setoid.eq naivePolySetoid) (Group.identRight polyGroup {map (_*_ c) bs})) (Equivalence.reflexive (Setoid.eq naivePolySetoid) {0G :: (cs *P bs)}))) (+PwellDefined {(map (_*_ c) bs +P [])} {0G :: (cs *P bs)} {(map (_*_ c) bs) +P map (_*_ b) cs} (+PwellDefined (Equivalence.reflexive (Setoid.eq naivePolySetoid) {map (_*_ c) bs}) (Equivalence.symmetric (Setoid.eq naivePolySetoid) (zeroTimes2 {cs} b (Equivalence.symmetric (Setoid.eq naivePolySetoid) snd)))) (Equivalence.reflexive (Setoid.eq naivePolySetoid) {0G :: (cs *P bs)}))
where
ans : polysEqual [] (map id (cs *P bs))
ans rewrite mapId (cs *P bs) = *PwellDefinedL snd
*PwellDefinedL {a :: as} {[]} {[]} a=c = record {}
*PwellDefinedL {a :: as} {[]} {x :: c} a=c = record {}
*PwellDefinedL {a :: as} {b :: bs} {[]} (fst ,, snd) = transitive (transitive *Commutative (*WellDefined reflexive fst)) (timesZero {b}) ,, Equivalence.transitive (Setoid.eq naivePolySetoid) (+PwellDefined {(map (_*_ a) bs +P map (_*_ b) as)} {0G :: (as *P bs)} {[] +P []} {[]} (+PwellDefined {map (_*_ a) bs} {map (_*_ b) as} {[]} {[]} (zeroTimes1 {bs} a fst) (zeroTimes2 {as} b snd)) (reflexive ,, *PwellDefinedL {as} {bs} {[]} snd)) (record {})
*PwellDefinedL {a :: as} {b :: bs} {c :: cs} (fst ,, snd) = *WellDefined fst reflexive ,, +PwellDefined {(map (_*_ a) bs) +P (map (_*_ b) as)} {0G :: (as *P bs)} {map (_*_ c) bs +P map (_*_ b) cs} {0G :: (cs *P bs)} (+PwellDefined {map (_*_ a) bs} {map (_*_ b) as} {map (_*_ c) bs} {map (_*_ b) cs} (mapWellDefined a c bs fst) (mapWellDefined' b as cs snd)) (reflexive ,, *PwellDefinedL {as} {bs} {cs} snd)
*PwellDefinedR : {a b c : NaivePoly} polysEqual b c polysEqual (a *P b) (a *P c)
*PwellDefinedR {a} {b} {c} b=c = Equivalence.transitive (Setoid.eq naivePolySetoid) (p*Commutative {a} {b}) (Equivalence.transitive (Setoid.eq naivePolySetoid) (*PwellDefinedL b=c) (p*Commutative {c} {a}))
*PwellDefined : {a b c d : NaivePoly} polysEqual a c polysEqual b d polysEqual (a *P b) (c *P d)
*PwellDefined {a}{b}{c}{d} a=c b=d = Equivalence.transitive (Setoid.eq naivePolySetoid) (*PwellDefinedL a=c) (*PwellDefinedR b=d)
private
*1 : (a : NaivePoly) polysEqual (map (_*_ 1R) a) a
*1 [] = record {}
*1 (x :: a) = Ring.identIsIdent R ,, *1 a
*Pident : {a : NaivePoly} polysEqual ((1R :: []) *P a) a
*Pident {[]} = record {}
*Pident {x :: a} = Ring.identIsIdent R ,, Equivalence.transitive (Setoid.eq naivePolySetoid) (+PwellDefined {map (_*_ 1R) a +P []} {0G :: []} {map (_*_ 1R) a} {[]} (Group.identRight polyGroup) (reflexive ,, record {})) (Equivalence.transitive (Setoid.eq naivePolySetoid) (Group.identRight polyGroup {map (_*_ 1R) a}) (*1 a))
private
mapMap' : (f g : A A) (xs : NaivePoly) map f (map g xs) map (λ x f (g x)) xs
mapMap' f g [] = refl
mapMap' f g (x :: xs) rewrite mapMap' f g xs = refl
mapMap'' : (f g : A A) (xs : NaivePoly) Setoid.__ naivePolySetoid (map f (map g xs)) (map (λ x f (g x)) xs)
mapMap'' f g xs rewrite mapMap' f g xs = Equivalence.reflexive (Setoid.eq naivePolySetoid)
mapWd : (f g : A A) (xs : NaivePoly) ((x : A) (f x) (g x)) polysEqual (map f xs) (map g xs)
mapWd f g [] ext = record {}
mapWd f g (x :: xs) ext = ext x ,, mapWd f g xs ext
mapDist' : (b c : A) (as : NaivePoly) polysEqual (map (_*_ (b + c)) as) (map (_*_ c) as +P map (_*_ b) as)
mapDist' b c [] = record {}
mapDist' b c (x :: as) = transitive (Ring.*DistributesOver+' R {b} {c} {x}) groupIsAbelian ,, mapDist' b c as
mapTimes : (a b : NaivePoly) (c : A) polysEqual (a *P (map (_*_ c) b)) (map (_*_ c) (a *P b))
mapTimes [] b c = record {}
mapTimes (a :: as) [] c = record {}
mapTimes (a :: as) (x :: b) c = transitive *Associative (transitive (*WellDefined *Commutative reflexive) (symmetric *Associative)) ,, trans (+PwellDefined {(map (_*_ a) (map (_*_ c) b)) +P map (_*_ (c * x)) as} {0G :: (as *P map (_*_ c) b)} {map (_*_ c) (map (_*_ a) b +P map (_*_ x) as)} (trans (+PwellDefined {map (_*_ a) (map (_*_ c) b)} {map (_*_ (c * x)) as} {map (_*_ c) (map (_*_ a) b)} (trans (mapMap'' (_*_ a) (_*_ c) b) (trans (mapWd (λ x a * (c * x)) (λ x c * (a * x)) b (λ x transitive *Associative (transitive (*WellDefined *Commutative reflexive) (symmetric *Associative)))) (sym (mapMap'' (_*_ c) (_*_ a) b)))) (trans (mapWd (_*_ (c * x)) (λ y c * (x * y)) as λ y symmetric *Associative) (sym (mapMap'' (_*_ c) (_*_ x) as)))) (sym (mapDist (_*_ c) *DistributesOver+ (map (_*_ a) b) (map (_*_ x) as)))) (symmetric timesZero ,, mapTimes as b c)) (sym (mapDist (_*_ c) *DistributesOver+ (map (_*_ a) b +P map (_*_ x) as) (0G :: (as *P b))))
where
open Equivalence (Setoid.eq naivePolySetoid) renaming (transitive to trans ; symmetric to sym ; reflexive to ref)
mapTimes' : (a b : NaivePoly) (c : A) polysEqual (map (_*_ c) (a *P b)) ((map (_*_ c) a) *P b)
mapTimes' a b c = trans (trans (mapWellDefined' c (a *P b) (b *P a) (p*Commutative {a} {b})) (sym (mapTimes b a c))) (p*Commutative {b} {map (_*_ c) a})
where
open Equivalence (Setoid.eq naivePolySetoid) renaming (transitive to trans ; symmetric to sym ; reflexive to ref)
bumpTimes' : (a bs : NaivePoly) (b : A) polysEqual (a *P (b :: bs)) (map (_*_ b) a +P (0G :: (a *P bs)))
bumpTimes' [] bs b = reflexive ,, record {}
bumpTimes' (x :: a) bs b = transitive *Commutative (symmetric identRight) ,, trans (+PwellDefined {map (_*_ x) bs +P map (_*_ b) a} {0G :: (a *P bs)} {_} {0G :: (a *P bs)} (+PCommutative {map (_*_ x) bs} {map (_*_ b) a}) (ref {0G :: (a *P bs)})) (trans (sym (Group.+Associative polyGroup {map (_*_ b) a})) (+PwellDefined {map (_*_ b) a} {_} {map (_*_ b) a} {_} (ref {map (_*_ b) a}) (trans (trans (+PwellDefined {map (_*_ x) bs} {_} {map (_*_ x) bs} (ref {map (_*_ x) bs}) (reflexive ,, p*Commutative {a})) (sym (bumpTimes' bs a x))) (p*Commutative {bs}))))
where
open Equivalence (Setoid.eq naivePolySetoid) renaming (transitive to trans ; symmetric to sym ; reflexive to ref)
bumpTimes : {a b : NaivePoly} polysEqual (a *P (0G :: b)) (0G :: (a *P b))
bumpTimes {[]} {b} = reflexive ,, record {}
bumpTimes {x :: a} {[]} = timesZero ,, trans (sym (Group.+Associative polyGroup {[]} {map (_*_ 0G) a})) ans
where
open Equivalence (Setoid.eq naivePolySetoid) renaming (transitive to trans ; symmetric to sym ; reflexive to ref)
ans : polysEqual (map id (map (_*_ 0G) a +P (0G :: (a *P [])))) []
ans rewrite mapId (map (_*_ 0G) a +P (0G :: (a *P []))) = (+PwellDefined {map (_*_ 0G) a} {0G :: (a *P [])} {[]} {[]} (zeroTimes1 0G reflexive) (reflexive ,, p*Commutative {a}))
bumpTimes {x :: a} {b :: bs} = timesZero ,, trans (+PwellDefined {((x * b) :: map (_*_ x) bs) +P map (_*_ 0G) a} {0G :: (a *P (b :: bs))} {(x * b) :: map (_*_ x) bs} {0G :: (a *P (b :: bs))} (trans (+PwellDefined {(x * b) :: map (_*_ x) bs} {map (_*_ 0G) a} {(x * b) :: map (_*_ x) bs} {[]} (ref {(x * b) :: map (_*_ x) bs}) (zeroTimes1 0G reflexive)) (Group.identRight polyGroup {(x * b) :: map (_*_ x) bs})) (ref {0G :: (a *P (b :: bs))})) (identRight ,, trans (+PwellDefined {map (_*_ x) bs} {_} {map (_*_ x) bs} ref (bumpTimes' a bs b)) (Group.+Associative polyGroup {map (_*_ x) bs} {map (_*_ b) a} {0G :: (a *P bs)}))
where
open Equivalence (Setoid.eq naivePolySetoid) renaming (transitive to trans ; symmetric to sym ; reflexive to ref)
*Pdistrib : {a b c : NaivePoly} polysEqual (a *P (b +P c)) ((a *P b) +P (a *P c))
*Pdistrib {[]} {b} {c} = record {}
*Pdistrib {a :: as} {[]} {[]} = record {}
*Pdistrib {a :: as} {[]} {c :: cs} rewrite mapId cs | mapId ((map (_*_ a) cs +P map (_*_ c) as) +P (0G :: (as *P cs))) = reflexive ,, +PwellDefined {(map (_*_ a) cs) +P (map (_*_ c) as)} {_} {(map (_*_ a) cs) +P (map (_*_ c) as)} (Equivalence.reflexive (Setoid.eq naivePolySetoid)) (Equivalence.reflexive (Setoid.eq naivePolySetoid) {0G :: (as *P cs)})
*Pdistrib {a :: as} {b :: bs} {[]} rewrite mapId bs | mapId ((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))) = reflexive ,, +PwellDefined {(map (_*_ a) bs) +P (map (_*_ b) as)} {_} {(map (_*_ a) bs) +P (map (_*_ b) as)} (Equivalence.reflexive (Setoid.eq naivePolySetoid)) (Equivalence.reflexive (Setoid.eq naivePolySetoid) {0G :: (as *P bs)})
*Pdistrib {a :: as} {b :: bs} {c :: cs} = *DistributesOver+ ,, trans (+PwellDefined {(map (_*_ a) (bs +P cs)) +P (map (_*_ (b + c)) as)} {0G :: (as *P (bs +P cs))} {(map (_*_ a) bs +P map (_*_ b) as) +P ((map (_*_ a) cs) +P (map (_*_ c) as))} {0G :: ((as *P bs) +P (as *P cs))} (trans (+PwellDefined (mapDist (_*_ a) *DistributesOver+ bs cs) (mapDist' b c as)) (trans (sym (+Assoc {map (_*_ a) bs} {map (_*_ a) cs})) (trans (+PwellDefined (ref {map (_*_ a) bs}) (trans (trans (+Assoc {map (_*_ a) cs} {map (_*_ c) as}) ref) (+PCommutative {map (_*_ a) cs +P map (_*_ c) as} {map (_*_ b) as}))) (+Assoc {map (_*_ a) bs} {map (_*_ b) as})))) (reflexive ,, *Pdistrib {as} {bs} {cs})) (trans (sym (+Assoc {(map (_*_ a) bs +P map (_*_ b) as)} {(map (_*_ a) cs +P map (_*_ c) as)} {0G :: ((as *P bs) +P (as *P cs))})) (trans (+PwellDefined (ref {map (_*_ a) bs +P map (_*_ b) as}) (trans (trans (+PwellDefined (ref {map (_*_ a) cs +P map (_*_ c) as}) (symmetric identLeft ,, +PCommutative {as *P bs})) (+Assoc {map (_*_ a) cs +P (map (_*_ c) as)} {0G :: (as *P cs)} {0G :: (as *P bs)})) (+PCommutative {(map (_*_ a) cs +P map (_*_ c) as) +P (0G :: (as *P cs))} {0G :: (as *P bs)}))) (+Assoc {map (_*_ a) bs +P map (_*_ b) as} {0G :: (as *P bs)})))
where
open Equivalence (Setoid.eq naivePolySetoid) renaming (transitive to trans ; symmetric to sym ; reflexive to ref)
open Group polyGroup renaming (+Associative to +Assoc ; 0G to 0P) hiding (identLeft)
*Passoc : {a b c : NaivePoly} polysEqual (a *P (b *P c)) ((a *P b) *P c)
*Passoc {[]} {b} {c} = record {}
*Passoc {a :: as} {[]} {c} = record {}
*Passoc {a :: as} {b :: bs} {[]} = record {}
*Passoc {a :: as} {b :: bs} {c :: cs} = *Associative ,, trans (+PwellDefined {(map (_*_ a) ((map (_*_ b) cs +P map (_*_ c) bs) +P (0G :: (bs *P cs))) +P map (_*_ (b * c)) as)} {0G :: (as *P ((map (_*_ b) cs +P map (_*_ c) bs) +P (0G :: (bs *P cs))))} {(((map (_*_ (a * b)) cs) +P (map (_*_ (a * c)) bs)) +P (map (_*_ a) (0G :: (bs *P cs)))) +P (map (_*_ (b * c)) as)} {0G :: (((map (_*_ b) (as *P cs)) +P (map (_*_ c) (as *P bs))) +P (as *P (0G :: (bs *P cs))))} (+PwellDefined {map (_*_ a) ((map (_*_ b) cs +P map (_*_ c) bs) +P (0G :: (bs *P cs)))} {map (_*_ (b * c)) as} {((map (_*_ (a * b)) cs +P map (_*_ (a * c)) bs) +P ((a * 0G) :: map (_*_ a) (bs *P cs)))} {map (_*_ (b * c)) as} (trans (mapDist (_*_ a) *DistributesOver+ (map (_*_ b) cs +P map (_*_ c) bs) (0G :: (bs *P cs))) (+PwellDefined {map (_*_ a) (map (_*_ b) cs +P map (_*_ c) bs)} {(a * 0G) :: map (_*_ a) (bs *P cs)} {map (_*_ (a * b)) cs +P map (_*_ (a * c)) bs} (trans (mapDist (_*_ a) *DistributesOver+ (map (_*_ b) cs) (map (_*_ c) bs)) (+PwellDefined {map (_*_ a) (map (_*_ b) cs)} {map (_*_ a) (map (_*_ c) bs)} {map (_*_ (a * b)) cs} (trans (mapMap'' (_*_ a) (_*_ b) cs) (mapWd (λ x a * (b * x)) (_*_ (a * b)) cs (λ x *Associative))) (trans (mapMap'' (_*_ a) (_*_ c) bs) (mapWd (λ x a * (c * x)) (_*_ (a * c)) bs λ x *Associative)))) (ref {(a * 0G) :: map (_*_ a) (bs *P cs)}))) (ref {map (_*_ (b * c)) as})) (reflexive ,, trans (*Pdistrib {as} {(map (_*_ b) cs +P map (_*_ c) bs)} {0G :: (bs *P cs)}) (+PwellDefined {(as *P (map (_*_ b) cs +P map (_*_ c) bs))} {as *P (0G :: (bs *P cs))} {(map (_*_ b) (as *P cs) +P map (_*_ c) (as *P bs))} (trans (*Pdistrib {as} {map (_*_ b) cs} {map (_*_ c) bs}) (+PwellDefined {as *P map (_*_ b) cs} {as *P map (_*_ c) bs} {map (_*_ b) (as *P cs)} (mapTimes as cs b) (mapTimes as bs c))) (ref {as *P (0G :: (bs *P cs))})))) (trans (trans (sym (Group.+Associative polyGroup {((map (_*_ (a * b)) cs) +P (map (_*_ (a * c)) bs)) +P ((a * 0G) :: map (_*_ a) (bs *P cs))})) (trans (sym (Group.+Associative polyGroup {(map (_*_ (a * b)) cs) +P (map (_*_ (a * c)) bs)})) (trans (sym (Group.+Associative polyGroup {map (_*_ (a * b)) cs})) (+PwellDefined {map (_*_ (a * b)) cs} (ref {map (_*_ (a * b)) cs}) (trans (trans ans (Group.+Associative polyGroup {map (_*_ c) (map (_*_ a) bs +P map (_*_ b) as)})) (+PwellDefined {_} {0G :: (((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))) *P cs)} {map (_*_ c) ((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs)))} (sym (mapDist (_*_ c) *DistributesOver+ ((map (_*_ a) bs +P map (_*_ b) as)) (0G :: (as *P bs)))) (ref {0G :: (((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))) *P cs)}))))))) (Group.+Associative polyGroup {map (_*_ (a * b)) cs} {map (_*_ c) ((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs)))}))
where
open Equivalence (Setoid.eq naivePolySetoid) renaming (transitive to trans ; symmetric to sym ; reflexive to ref)
open Group polyGroup renaming (+Associative to +Assoc ; 0G to 0P) hiding (identLeft ; identRight)
ans2 : polysEqual ((map (_*_ a) (bs *P cs) +P (map (_*_ b) (as *P cs) +P map (_*_ c) (as *P bs))) +P (as *P (0G :: (bs *P cs)))) (map (_*_ c) (as *P bs) +P (((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))) *P cs))
ans2 = trans (+PwellDefined {_} {as *P (0G :: (bs *P cs))} {_} {as *P (0G :: (bs *P cs))} (trans (+Assoc {map (_*_ a) (bs *P cs)} {map (_*_ b) (as *P cs)} {map (_*_ c) (as *P bs)}) (+PCommutative {map (_*_ a) (bs *P cs) +P map (_*_ b) (as *P cs)} {map (_*_ c) (as *P bs)})) ref) (trans (sym (+Assoc {map (_*_ c) (as *P bs)} {_} {as *P (0G :: (bs *P cs))}) ) (+PwellDefined {map (_*_ c) (as *P bs)} {_} {map (_*_ c) (as *P bs)} ref (trans (+PwellDefined {map (_*_ a) (bs *P cs) +P map (_*_ b) (as *P cs)} {as *P (0G :: (bs *P cs))} {((map (_*_ a) bs) *P cs) +P ((map (_*_ b) as) *P cs)} {0G :: (as *P (bs *P cs))} (+PwellDefined {map (_*_ a) (bs *P cs)} {map (_*_ b) (as *P cs)} {map (_*_ a) bs *P cs} {map (_*_ b) as *P cs} (mapTimes' bs cs a) (mapTimes' as cs b)) (bumpTimes {as} {bs *P cs})) (trans (trans (+PwellDefined {(map (_*_ a) bs *P cs) +P (map (_*_ b) as *P cs)} {0G :: (as *P (bs *P cs))} {cs *P (map (_*_ a) bs +P map (_*_ b) as)} {cs *P (0G :: (as *P bs))} (trans (+PwellDefined {map (_*_ a) bs *P cs} {map (_*_ b) as *P cs} {cs *P map (_*_ a) bs} {cs *P map (_*_ b) as} (p*Commutative {_} {cs}) (p*Commutative {_} {cs})) (sym (*Pdistrib {cs} {map (_*_ a) bs} {map (_*_ b) as}))) (trans (reflexive ,, trans (*Passoc {as} {bs} {cs}) (p*Commutative {_} {cs})) (sym (bumpTimes {cs} {as *P bs})))) (sym (*Pdistrib {cs} {(map (_*_ a) bs) +P (map (_*_ b) as)} {0G :: (as *P bs)}))) (p*Commutative {cs} {(map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))})))))
ans :
polysEqual
((map (_*_ (a * c)) bs) +P (((a * 0G) :: map (_*_ a) (bs *P cs)) +P (map (_*_ (b * c)) as +P (0G :: ((map (_*_ b) (as *P cs) +P map (_*_ c) (as *P bs)) +P (as *P (0G :: (bs *P cs))))))))
((map (_*_ c) ((map (_*_ a) bs) +P (map (_*_ b) as))) +P (((c * 0G) :: map (_*_ c) (as *P bs)) +P (0G :: (((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))) *P cs))))
ans = trans (trans (+PwellDefined {map (_*_ (a * c)) bs} {_} {map (_*_ c) (map (_*_ a) bs)} (trans (mapWd (_*_ (a * c)) (λ x c * (a * x)) bs (λ x transitive (*WellDefined *Commutative reflexive) (symmetric *Associative))) (sym (mapMap'' (_*_ c) (_*_ a) bs))) (trans (+PCommutative {(a * 0G) :: map (_*_ a) (bs *P cs)} {map (_*_ (b * c)) as +P (0G :: ((map (_*_ b) (as *P cs) +P map (_*_ c) (as *P bs)) +P (as *P (0G :: bs *P cs))))}) (trans (sym (+Assoc {map (_*_ (b * c)) as})) (+PwellDefined {map (_*_ (b * c)) as} {_} {map (_*_ c) (map (_*_ b) as)} (trans (mapWd (_*_ (b * c)) (λ x c * (b * x)) as λ x transitive (*WellDefined *Commutative reflexive) (symmetric *Associative)) (sym (mapMap'' (_*_ c) (_*_ b) as))) (transitive identLeft (transitive (transitive timesZero (symmetric timesZero)) (symmetric identRight)) ,, trans (+PCommutative {(map (_*_ b) (as *P cs) +P map (_*_ c) (as *P bs)) +P (as *P (0G :: (bs *P cs)))} {map (_*_ a) (bs *P cs)}) (trans (+Assoc {map (_*_ a) (bs *P cs)} {(map (_*_ b) (as *P cs)) +P (map (_*_ c) (as *P bs))} {as *P (0G :: (bs *P cs))}) ans2)))))) (+Assoc {map (_*_ c) (map (_*_ a) bs)})) (+PwellDefined {(map (_*_ c) (map (_*_ a) bs)) +P (map (_*_ c) (map (_*_ b) as))} {(((c * 0G) :: map (_*_ c) (as *P bs)) +P (0G :: (((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))) *P cs)))} {map (_*_ c) ((map (_*_ a) bs) +P (map (_*_ b) as))} {(((c * 0G) :: map (_*_ c) (as *P bs)) +P (0G :: (((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))) *P cs)))} (sym (mapDist (_*_ c) (*DistributesOver+) (map (_*_ a) bs) (map (_*_ b) as))) (ref {(((c * 0G) :: map (_*_ c) (as *P bs)) +P (0G :: (((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))) *P cs)))}))