Files
agdaproofs/Rings/Polynomial/Evaluation.agda
2020-03-28 21:34:14 +00:00

53 lines
4.4 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Homomorphisms.Definition
open import Groups.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Lists.Lists
open import Rings.Homomorphisms.Definition
module Rings.Polynomial.Evaluation {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} (R : Ring S _+_ _*_) where
open Ring R
open Setoid S
open Equivalence eq
open Group additiveGroup
open import Groups.Polynomials.Definition additiveGroup
open import Groups.Polynomials.Addition additiveGroup
open import Rings.Polynomial.Ring R
open import Rings.Polynomial.Multiplication R
inducedFunction : NaivePoly A A
inducedFunction [] a = 0R
inducedFunction (x :: p) a = x + (a * inducedFunction p a)
inducedFunctionMult : (as : NaivePoly) (b c : A) inducedFunction (map (_*_ b) as) c (inducedFunction as c) * b
inducedFunctionMult [] b c = symmetric (transitive *Commutative timesZero)
inducedFunctionMult (x :: as) b c = transitive (transitive (+WellDefined reflexive (transitive (transitive (*WellDefined reflexive (inducedFunctionMult as b c)) *Associative) *Commutative)) (symmetric *DistributesOver+)) *Commutative
inducedFunctionWellDefined : {a b : NaivePoly} polysEqual a b (c : A) inducedFunction a c inducedFunction b c
inducedFunctionWellDefined {[]} {[]} a=b c = reflexive
inducedFunctionWellDefined {[]} {x :: b} (fst ,, snd) c = symmetric (transitive (+WellDefined fst (transitive (*WellDefined reflexive (symmetric (inducedFunctionWellDefined {[]} {b} snd c))) (timesZero {c}))) identRight)
inducedFunctionWellDefined {a :: as} {[]} (fst ,, snd) c = transitive (+WellDefined fst reflexive) (transitive identLeft (transitive (*WellDefined reflexive (inducedFunctionWellDefined {as} {[]} snd c)) (timesZero {c})))
inducedFunctionWellDefined {a :: as} {b :: bs} (fst ,, snd) c = +WellDefined fst (*WellDefined reflexive (inducedFunctionWellDefined {as} {bs} snd c))
inducedFunctionGroupHom : {x y : NaivePoly} (a : A) inducedFunction (x +P y) a (inducedFunction x a + inducedFunction y a)
inducedFunctionGroupHom {[]} {[]} a = symmetric identLeft
inducedFunctionGroupHom {[]} {x :: y} a rewrite mapId y = symmetric identLeft
inducedFunctionGroupHom {x :: xs} {[]} a rewrite mapId xs = symmetric identRight
inducedFunctionGroupHom {x :: xs} {y :: ys} a = transitive (symmetric +Associative) (transitive (+WellDefined reflexive (transitive (transitive (+WellDefined reflexive (transitive (*WellDefined reflexive (transitive (inducedFunctionGroupHom {xs} {ys} a) groupIsAbelian)) *DistributesOver+)) +Associative) groupIsAbelian)) +Associative)
inducedFunctionRingHom : (r s : NaivePoly) (a : A) inducedFunction (r *P s) a (inducedFunction r a * inducedFunction s a)
inducedFunctionRingHom [] s a = symmetric (transitive *Commutative timesZero)
inducedFunctionRingHom (x :: xs) [] a = symmetric timesZero
inducedFunctionRingHom (b :: bs) (c :: cs) a = transitive (+WellDefined reflexive (*WellDefined reflexive (inducedFunctionGroupHom {map (_*_ b) cs +P map (_*_ c) bs} {0G :: (bs *P cs)} a))) (transitive (+WellDefined reflexive (*WellDefined reflexive (+WellDefined (inducedFunctionGroupHom {map (_*_ b) cs} {map (_*_ c) bs} a) identLeft))) (transitive (transitive (transitive (+WellDefined reflexive (transitive (transitive (transitive (*WellDefined reflexive (transitive (+WellDefined (transitive groupIsAbelian (+WellDefined (inducedFunctionMult bs c a) (inducedFunctionMult cs b a))) (transitive (transitive (*WellDefined reflexive (transitive (inducedFunctionRingHom bs cs a) *Commutative)) *Associative) *Commutative)) (symmetric +Associative))) *DistributesOver+) (+WellDefined reflexive *DistributesOver+)) (+WellDefined *Associative (+WellDefined (transitive *Associative *Commutative) *Associative)))) +Associative) (+WellDefined (symmetric *DistributesOver+') (symmetric *DistributesOver+'))) (symmetric *DistributesOver+)))
inducedFunctionIsHom : (a : A) RingHom polyRing R (λ p inducedFunction p a)
RingHom.preserves1 (inducedFunctionIsHom a) = transitive (+WellDefined reflexive (timesZero {a})) identRight
RingHom.ringHom (inducedFunctionIsHom a) {r} {s} = inducedFunctionRingHom r s a
GroupHom.groupHom (RingHom.groupHom (inducedFunctionIsHom a)) {x} {y} = inducedFunctionGroupHom {x} {y} a
GroupHom.wellDefined (RingHom.groupHom (inducedFunctionIsHom a)) x=y = inducedFunctionWellDefined x=y a