mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-13 07:38:40 +00:00
218 lines
22 KiB
Agda
218 lines
22 KiB
Agda
{-# OPTIONS --safe --warning=error --without-K #-}
|
||
|
||
open import LogicalFormulae
|
||
open import Groups.Lemmas
|
||
open import Groups.Definition
|
||
open import Setoids.Orders.Partial.Definition
|
||
open import Setoids.Orders.Total.Definition
|
||
open import Setoids.Setoids
|
||
open import Functions.Definition
|
||
open import Sets.EquivalenceRelations
|
||
open import Rings.Definition
|
||
open import Rings.Orders.Total.Definition
|
||
open import Rings.Orders.Partial.Definition
|
||
open import Numbers.Naturals.Semiring
|
||
open import Numbers.Naturals.Order
|
||
open import Orders.Total.Definition
|
||
open import Rings.IntegralDomains.Definition
|
||
|
||
module Rings.Orders.Total.AbsoluteValue {n m p : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} {pOrderRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pOrderRing) where
|
||
|
||
open Ring R
|
||
open Group additiveGroup
|
||
open Setoid S
|
||
open SetoidPartialOrder pOrder
|
||
open TotallyOrderedRing order
|
||
open SetoidTotalOrder total
|
||
open PartiallyOrderedRing pOrderRing
|
||
open import Rings.Lemmas R
|
||
open import Rings.Orders.Partial.Lemmas pOrderRing
|
||
open import Rings.Orders.Total.Lemmas order
|
||
|
||
abs : A → A
|
||
abs a with totality 0R a
|
||
abs a | inl (inl 0<a) = a
|
||
abs a | inl (inr a<0) = inverse a
|
||
abs a | inr 0=a = a
|
||
|
||
absWellDefined : (a b : A) → a ∼ b → abs a ∼ abs b
|
||
absWellDefined a b a=b with totality 0R a
|
||
absWellDefined a b a=b | inl (inl 0<a) with totality 0R b
|
||
absWellDefined a b a=b | inl (inl 0<a) | inl (inl 0<b) = a=b
|
||
absWellDefined a b a=b | inl (inl 0<a) | inl (inr b<0) = exFalso (irreflexive {0G} (<Transitive 0<a (<WellDefined (Equivalence.symmetric eq a=b) (Equivalence.reflexive eq) b<0)))
|
||
absWellDefined a b a=b | inl (inl 0<a) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq a=b (Equivalence.symmetric eq 0=b)) 0<a))
|
||
absWellDefined a b a=b | inl (inr a<0) with totality 0R b
|
||
absWellDefined a b a=b | inl (inr a<0) | inl (inl 0<b) = exFalso (irreflexive {0G} (<Transitive 0<b (<WellDefined a=b (Equivalence.reflexive eq) a<0)))
|
||
absWellDefined a b a=b | inl (inr a<0) | inl (inr b<0) = inverseWellDefined additiveGroup a=b
|
||
absWellDefined a b a=b | inl (inr a<0) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq a=b (Equivalence.symmetric eq 0=b)) (Equivalence.reflexive eq) a<0))
|
||
absWellDefined a b a=b | inr 0=a with totality 0R b
|
||
absWellDefined a b a=b | inr 0=a | inl (inl 0<b) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (Equivalence.transitive eq 0=a a=b)) 0<b))
|
||
absWellDefined a b a=b | inr 0=a | inl (inr b<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq 0=a a=b)) (Equivalence.reflexive eq) b<0))
|
||
absWellDefined a b a=b | inr 0=a | inr 0=b = a=b
|
||
|
||
triangleInequality : (a b : A) → ((abs (a + b)) < ((abs a) + (abs b))) || (abs (a + b) ∼ (abs a) + (abs b))
|
||
triangleInequality a b with totality 0R (a + b)
|
||
triangleInequality a b | inl (inl 0<a+b) with totality 0R a
|
||
triangleInequality a b | inl (inl 0<a+b) | inl (inl 0<a) with totality 0R b
|
||
triangleInequality a b | inl (inl 0<a+b) | inl (inl 0<a) | inl (inl 0<b) = inr (Equivalence.reflexive eq)
|
||
triangleInequality a b | inl (inl 0<a+b) | inl (inl 0<a) | inl (inr b<0) = inl (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder b<0 (lemm2 b b<0)) a))
|
||
triangleInequality a b | inl (inl 0<a+b) | inl (inl 0<a) | inr 0=b = inr (Equivalence.reflexive eq)
|
||
triangleInequality a b | inl (inl 0<a+b) | inl (inr a<0) with totality 0R b
|
||
triangleInequality a b | inl (inl 0<a+b) | inl (inr a<0) | inl (inl 0<b) = inl (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder a<0 (lemm2 a a<0)) b)
|
||
triangleInequality a b | inl (inl 0<a+b) | inl (inr a<0) | inl (inr b<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<a+b (<WellDefined (Equivalence.reflexive eq) identLeft (ringAddInequalities a<0 b<0))))
|
||
triangleInequality a b | inl (inl 0<a+b) | inl (inr a<0) | inr 0=b = inl (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder a<0 (lemm2 a a<0)) b)
|
||
triangleInequality a b | inl (inl 0<a+b) | inr 0=a with totality 0R b
|
||
triangleInequality a b | inl (inl 0<a+b) | inr 0=a | inl (inl 0<b) = inr (Equivalence.reflexive eq)
|
||
triangleInequality a b | inl (inl 0<a+b) | inr 0=a | inl (inr b<0) = inl (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder b<0 (lemm2 b b<0)) a))
|
||
triangleInequality a b | inl (inl 0<a+b) | inr 0=a | inr 0=b = inr (Equivalence.reflexive eq)
|
||
triangleInequality a b | inl (inr a+b<0) with totality 0G a
|
||
triangleInequality a b | inl (inr a+b<0) | inl (inl 0<a) with totality 0G b
|
||
triangleInequality a b | inl (inr a+b<0) | inl (inl 0<a) | inl (inl 0<b) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft (Equivalence.reflexive eq) (ringAddInequalities 0<a 0<b)) a+b<0))
|
||
triangleInequality a b | inl (inr a+b<0) | inl (inl 0<a) | inl (inr b<0) = inl (<WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq (invContravariant additiveGroup)) (inverseWellDefined additiveGroup groupIsAbelian)) (Equivalence.reflexive eq) (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder (lemm2' _ 0<a) 0<a) (inverse b)))
|
||
triangleInequality a b | inl (inr a+b<0) | inl (inl 0<a) | inr 0=b = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<a (<WellDefined (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) identRight) (Equivalence.reflexive eq) a+b<0)))
|
||
triangleInequality a b | inl (inr a+b<0) | inl (inr a<0) with totality 0G b
|
||
triangleInequality a b | inl (inr a+b<0) | inl (inr a<0) | inl (inl 0<b) = inl (<WellDefined (Equivalence.symmetric eq (invContravariant additiveGroup)) groupIsAbelian (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder (lemm2' _ 0<b) 0<b) (inverse a)))
|
||
triangleInequality a b | inl (inr a+b<0) | inl (inr a<0) | inl (inr b<0) = inr (Equivalence.transitive eq (invContravariant additiveGroup) groupIsAbelian)
|
||
triangleInequality a b | inl (inr a+b<0) | inl (inr a<0) | inr 0=b = inr (Equivalence.transitive eq (invContravariant additiveGroup) (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (+WellDefined (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=b)) (invIdent additiveGroup)) (Equivalence.reflexive eq)) identLeft) (Equivalence.symmetric eq identRight)) (+WellDefined (Equivalence.reflexive eq) 0=b)))
|
||
triangleInequality a b | inl (inr a+b<0) | inr 0=a with totality 0G b
|
||
triangleInequality a b | inl (inr a+b<0) | inr 0=a | inl (inl 0<b) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<b (<WellDefined (Equivalence.transitive eq (+WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) identLeft) (Equivalence.reflexive eq) a+b<0)))
|
||
triangleInequality a b | inl (inr a+b<0) | inr 0=a | inl (inr b<0) = inr (Equivalence.transitive eq (invContravariant additiveGroup) (Equivalence.transitive eq groupIsAbelian (+WellDefined (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq (inverseWellDefined additiveGroup 0=a)) (invIdent additiveGroup)) 0=a) (Equivalence.reflexive eq))))
|
||
triangleInequality a b | inl (inr a+b<0) | inr 0=a | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq (+WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.symmetric eq 0=b)) identLeft) (Equivalence.reflexive eq) a+b<0))
|
||
triangleInequality a b | inr 0=a+b with totality 0G a
|
||
triangleInequality a b | inr 0=a+b | inl (inl 0<a) with totality 0G b
|
||
triangleInequality a b | inr 0=a+b | inl (inl 0<a) | inl (inl 0<b) = exFalso (irreflexive {0G} (<WellDefined identLeft (Equivalence.symmetric eq 0=a+b) (ringAddInequalities 0<a 0<b)))
|
||
triangleInequality a b | inr 0=a+b | inl (inl 0<a) | inl (inr b<0) = inl (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder b<0 (lemm2 _ b<0)) a))
|
||
triangleInequality a b | inr 0=a+b | inl (inl 0<a) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (lemm3 _ _ (Equivalence.transitive eq 0=a+b groupIsAbelian) 0=b)) 0<a))
|
||
triangleInequality a b | inr 0=a+b | inl (inr a<0) with totality 0G b
|
||
triangleInequality a b | inr 0=a+b | inl (inr a<0) | inl (inl 0<b) = inl (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder a<0 (lemm2 _ a<0)) b)
|
||
triangleInequality a b | inr 0=a+b | inl (inr a<0) | inl (inr b<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq 0=a+b) identLeft (ringAddInequalities a<0 b<0)))
|
||
triangleInequality a b | inr 0=a+b | inl (inr a<0) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (lemm3 _ _ (Equivalence.transitive eq 0=a+b groupIsAbelian) 0=b)) (Equivalence.reflexive eq) a<0))
|
||
triangleInequality a b | inr 0=a+b | inr 0=a with totality 0G b
|
||
triangleInequality a b | inr 0=a+b | inr 0=a | inl (inl 0<b) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (lemm3 a b 0=a+b 0=a)) 0<b))
|
||
triangleInequality a b | inr 0=a+b | inr 0=a | inl (inr b<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (lemm3 a b 0=a+b 0=a)) (Equivalence.reflexive eq) b<0))
|
||
triangleInequality a b | inr 0=a+b | inr 0=a | inr 0=b = inr (Equivalence.reflexive eq)
|
||
|
||
absZero : abs (Ring.0R R) ≡ Ring.0R R
|
||
absZero with totality (Ring.0R R) (Ring.0R R)
|
||
absZero | inl (inl x) = exFalso (irreflexive x)
|
||
absZero | inl (inr x) = exFalso (irreflexive x)
|
||
absZero | inr x = refl
|
||
|
||
absNegation : (a : A) → (abs a) ∼ (abs (inverse a))
|
||
absNegation a with totality 0R a
|
||
absNegation a | inl (inl 0<a) with totality 0G (inverse a)
|
||
absNegation a | inl (inl 0<a) | inl (inl 0<-a) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<-a (lemm2' a 0<a)))
|
||
absNegation a | inl (inl 0<a) | inl (inr -a<0) = Equivalence.symmetric eq (invTwice additiveGroup a)
|
||
absNegation a | inl (inl 0<a) | inr 0=-a = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq (invTwice additiveGroup a)) (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=-a))) (invIdent additiveGroup)) 0<a))
|
||
absNegation a | inl (inr a<0) with totality 0G (inverse a)
|
||
absNegation a | inl (inr a<0) | inl (inl 0<-a) = Equivalence.reflexive eq
|
||
absNegation a | inl (inr a<0) | inl (inr -a<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (<WellDefined (Equivalence.reflexive eq) (invTwice additiveGroup a) (lemm2 (inverse a) -a<0)) a<0))
|
||
absNegation a | inl (inr a<0) | inr 0=-a = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq (Equivalence.transitive eq (inverseWellDefined additiveGroup 0=-a) (invTwice additiveGroup a))) (invIdent additiveGroup)) (Equivalence.reflexive eq) a<0))
|
||
absNegation a | inr 0=a with totality 0G (inverse a)
|
||
absNegation a | inr 0=a | inl (inl 0<-a) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=a)) (invIdent additiveGroup)) 0<-a))
|
||
absNegation a | inr 0=a | inl (inr -a<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=a)) (invIdent additiveGroup)) (Equivalence.reflexive eq) -a<0))
|
||
absNegation a | inr 0=a | inr 0=-a = Equivalence.transitive eq (Equivalence.symmetric eq 0=a) 0=-a
|
||
|
||
absRespectsTimes : (a b : A) → abs (a * b) ∼ (abs a) * (abs b)
|
||
absRespectsTimes a b with totality 0R a
|
||
absRespectsTimes a b | inl (inl 0<a) with totality 0R b
|
||
absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) with totality 0R (a * b)
|
||
absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) | inl (inl 0<ab) = Equivalence.reflexive eq
|
||
absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) | inl (inr ab<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (orderRespectsMultiplication 0<a 0<b) ab<0))
|
||
absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) | inr 0=ab = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=ab) (orderRespectsMultiplication 0<a 0<b)))
|
||
absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) with totality 0R (a * b)
|
||
absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) | inl (inl 0<ab) with <WellDefined (Equivalence.reflexive eq) ringMinusExtracts (orderRespectsMultiplication 0<a (lemm2 b b<0))
|
||
... | bl = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<ab (<WellDefined (invTwice additiveGroup _) (Equivalence.reflexive eq) (lemm2' _ bl))))
|
||
absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) | inl (inr ab<0) = Equivalence.symmetric eq ringMinusExtracts
|
||
absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) | inr 0=ab = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq 0=ab) (Equivalence.reflexive eq) (posTimesNeg a b 0<a b<0)))
|
||
absRespectsTimes a b | inl (inl 0<a) | inr 0=b with totality 0R (a * b)
|
||
absRespectsTimes a b | inl (inl 0<a) | inr 0=b | inl (inl 0<ab) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (timesZero {a})) 0<ab))
|
||
absRespectsTimes a b | inl (inl 0<a) | inr 0=b | inl (inr ab<0) = exFalso ((irreflexive {0G} (<WellDefined (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (timesZero {a})) (Equivalence.reflexive eq) ab<0)))
|
||
absRespectsTimes a b | inl (inl 0<a) | inr 0=b | inr 0=ab = Equivalence.reflexive eq
|
||
absRespectsTimes a b | inl (inr a<0) with totality 0R b
|
||
absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) with totality 0R (a * b)
|
||
absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) | inl (inl 0<ab) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<ab (<WellDefined *Commutative (Equivalence.reflexive eq) (posTimesNeg b a 0<b a<0))))
|
||
absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) | inl (inr ab<0) = Equivalence.symmetric eq ringMinusExtracts'
|
||
absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) | inr 0=ab = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq 0=ab *Commutative)) (Equivalence.reflexive eq) (posTimesNeg b a 0<b a<0)))
|
||
absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) with totality 0R (a * b)
|
||
absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) | inl (inl 0<ab) = Equivalence.symmetric eq twoNegativesTimes
|
||
absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) | inl (inr ab<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (negTimesPos a b a<0 b<0) ab<0))
|
||
absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) | inr 0=ab = exFalso (exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=ab) (negTimesPos a b a<0 b<0))))
|
||
absRespectsTimes a b | inl (inr a<0) | inr 0=b with totality 0R (a * b)
|
||
absRespectsTimes a b | inl (inr a<0) | inr 0=b | inl (inl 0<ab) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (timesZero {a})) 0<ab))
|
||
absRespectsTimes a b | inl (inr a<0) | inr 0=b | inl (inr ab<0) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) timesZero) (Equivalence.reflexive eq) ab<0))
|
||
absRespectsTimes a b | inl (inr a<0) | inr 0=b | inr 0=ab = Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (Equivalence.transitive eq (Equivalence.transitive eq timesZero (Equivalence.symmetric eq timesZero)) (*WellDefined (Equivalence.reflexive eq) 0=b))
|
||
absRespectsTimes a b | inr 0=a with totality 0R b
|
||
absRespectsTimes a b | inr 0=a | inl (inl 0<b) with totality 0R (a * b)
|
||
absRespectsTimes a b | inr 0=a | inl (inl 0<b) | inl (inl 0<ab) = Equivalence.reflexive eq
|
||
absRespectsTimes a b | inr 0=a | inl (inl 0<b) | inl (inr ab<0) = Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) (Equivalence.transitive eq *Commutative timesZero))) (invIdent additiveGroup)) (Equivalence.transitive eq (Equivalence.symmetric eq timesZero) *Commutative)) (*WellDefined 0=a (Equivalence.reflexive eq))
|
||
absRespectsTimes a b | inr 0=a | inl (inl 0<b) | inr 0=ab = Equivalence.reflexive eq
|
||
absRespectsTimes a b | inr 0=a | inl (inr b<0) with totality 0R (a * b)
|
||
absRespectsTimes a b | inr 0=a | inl (inr b<0) | inl (inl 0<ab) = Equivalence.transitive eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) *Commutative) (Equivalence.transitive eq timesZero (Equivalence.transitive eq (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative timesZero)) (*WellDefined 0=a (Equivalence.reflexive eq))))
|
||
absRespectsTimes a b | inr 0=a | inl (inr b<0) | inl (inr ab<0) = Equivalence.symmetric eq ringMinusExtracts
|
||
absRespectsTimes a b | inr 0=a | inl (inr b<0) | inr 0=ab = Equivalence.transitive eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) *Commutative) (Equivalence.transitive eq timesZero (Equivalence.transitive eq (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative timesZero)) (*WellDefined 0=a (Equivalence.reflexive eq))))
|
||
absRespectsTimes a b | inr 0=a | inr 0=b with totality 0R (a * b)
|
||
absRespectsTimes a b | inr 0=a | inr 0=b | inl (inl 0<ab) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) timesZero) 0<ab))
|
||
absRespectsTimes a b | inr 0=a | inr 0=b | inl (inr ab<0) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) timesZero) (Equivalence.reflexive eq) ab<0))
|
||
absRespectsTimes a b | inr 0=a | inr 0=b | inr 0=ab = Equivalence.reflexive eq
|
||
|
||
absNonnegative : {a : A} → (abs a < 0R) → False
|
||
absNonnegative {a} pr with totality 0R a
|
||
absNonnegative {a} pr | inl (inl x) = irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder x pr)
|
||
absNonnegative {a} pr | inl (inr x) = irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (<WellDefined (Equivalence.reflexive eq) (invTwice additiveGroup a) (lemm2 (inverse a) pr)) x)
|
||
absNonnegative {a} pr | inr x = irreflexive {0G} (<WellDefined (Equivalence.symmetric eq x) (Equivalence.reflexive eq) pr)
|
||
|
||
absZeroImpliesZero : {a : A} → abs a ∼ 0R → a ∼ 0R
|
||
absZeroImpliesZero {a} a=0 with totality 0R a
|
||
absZeroImpliesZero {a} a=0 | inl (inl 0<a) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) a=0 0<a))
|
||
absZeroImpliesZero {a} a=0 | inl (inr a<0) = Equivalence.symmetric eq (lemm3 (inverse a) a (Equivalence.symmetric eq invLeft) (Equivalence.symmetric eq a=0))
|
||
absZeroImpliesZero {a} a=0 | inr 0=a = a=0
|
||
|
||
addingAbsCannotShrink : {a b : A} → 0G < b → 0G < ((abs a) + b)
|
||
addingAbsCannotShrink {a} {b} 0<b with totality 0G a
|
||
addingAbsCannotShrink {a} {b} 0<b | inl (inl x) = <WellDefined identLeft (Equivalence.reflexive eq) (ringAddInequalities x 0<b)
|
||
addingAbsCannotShrink {a} {b} 0<b | inl (inr x) = <WellDefined identLeft (Equivalence.reflexive eq) (ringAddInequalities (lemm2 a x) 0<b)
|
||
addingAbsCannotShrink {a} {b} 0<b | inr x = <WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.symmetric eq identLeft) (+WellDefined x (Equivalence.reflexive eq))) 0<b
|
||
|
||
greaterZeroImpliesEqualAbs : {a : A} → 0R < a → a ∼ abs a
|
||
greaterZeroImpliesEqualAbs {a} 0<a with totality 0R a
|
||
... | inl (inl _) = Equivalence.reflexive eq
|
||
... | inl (inr a<0) = exFalso (irreflexive (SetoidPartialOrder.<Transitive pOrder a<0 0<a))
|
||
... | inr 0=a = exFalso (irreflexive (<WellDefined 0=a (Equivalence.reflexive eq) 0<a))
|
||
|
||
lessZeroImpliesEqualNegAbs : {a : A} → a < 0R → abs a ∼ inverse a
|
||
lessZeroImpliesEqualNegAbs {a} a<0 with totality 0R a
|
||
... | inl (inr _) = Equivalence.reflexive eq
|
||
... | inl (inl 0<a) = exFalso (irreflexive (SetoidPartialOrder.<Transitive pOrder a<0 0<a))
|
||
... | inr 0=a = exFalso (irreflexive (<WellDefined (Equivalence.reflexive eq) 0=a a<0))
|
||
|
||
absZeroIsZero : abs 0R ∼ 0R
|
||
absZeroIsZero with totality 0R 0R
|
||
... | inl (inl bad) = exFalso (irreflexive bad)
|
||
... | inl (inr bad) = exFalso (irreflexive bad)
|
||
... | inr _ = Equivalence.reflexive eq
|
||
|
||
greaterThanAbsImpliesGreaterThan0 : {a b : A} → (abs a) < b → 0R < b
|
||
greaterThanAbsImpliesGreaterThan0 {a} {b} a<b with totality 0R a
|
||
greaterThanAbsImpliesGreaterThan0 {a} {b} a<b | inl (inl 0<a) = SetoidPartialOrder.<Transitive pOrder 0<a a<b
|
||
greaterThanAbsImpliesGreaterThan0 {a} {b} a<b | inl (inr a<0) = SetoidPartialOrder.<Transitive pOrder (lemm2 _ a<0) a<b
|
||
greaterThanAbsImpliesGreaterThan0 {a} {b} a<b | inr 0=a = <WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq) a<b
|
||
|
||
abs1Is1 : abs 1R ∼ 1R
|
||
abs1Is1 with totality 0R 1R
|
||
abs1Is1 | inl (inl 0<1) = Equivalence.reflexive eq
|
||
abs1Is1 | inl (inr 1<0) = exFalso (1<0False 1<0)
|
||
abs1Is1 | inr 0=1 = Equivalence.reflexive eq
|
||
|
||
absBoundedImpliesBounded : {a b : A} → abs a < b → a < b
|
||
absBoundedImpliesBounded {a} {b} a<b with totality 0G a
|
||
absBoundedImpliesBounded {a} {b} a<b | inl (inl x) = a<b
|
||
absBoundedImpliesBounded {a} {b} a<b | inl (inr x) = SetoidPartialOrder.<Transitive pOrder x (SetoidPartialOrder.<Transitive pOrder (lemm2 a x) a<b)
|
||
absBoundedImpliesBounded {a} {b} a<b | inr x = a<b
|
||
|
||
a-bPos : {a b : A} → ((a ∼ b) → False) → 0R < abs (a + inverse b)
|
||
a-bPos {a} {b} a!=b with totality 0R (a + inverse b)
|
||
a-bPos {a} {b} a!=b | inl (inl x) = x
|
||
a-bPos {a} {b} a!=b | inl (inr x) = lemm2 _ x
|
||
a-bPos {a} {b} a!=b | inr x = exFalso (a!=b (transferToRight additiveGroup (Equivalence.symmetric eq x)))
|