Files
agdaproofs/Rings/Lemmas.agda
2020-04-11 12:14:03 +01:00

62 lines
3.3 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Abelian.Definition
open import Groups.Definition
open import Groups.Lemmas
open import Rings.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.EuclideanAlgorithm
open import Numbers.Primes.PrimeNumbers
module Rings.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} (R : Ring S _+_ _*_) where
abstract
open Setoid S
open Ring R
open Group additiveGroup
ringMinusExtracts : {x y : A} (x * Group.inverse (Ring.additiveGroup R) y) (Group.inverse (Ring.additiveGroup R) (x * y))
ringMinusExtracts {x = x} {y} = transferToRight' additiveGroup (transitive (symmetric *DistributesOver+) (transitive (*WellDefined reflexive invLeft) (Ring.timesZero R)))
where
open Equivalence eq
ringMinusExtracts' : {x y : A} ((inverse x) * y) inverse (x * y)
ringMinusExtracts' {x = x} {y} = transitive *Commutative (transitive ringMinusExtracts (inverseWellDefined additiveGroup *Commutative))
where
open Equivalence eq
twoNegativesTimes : {a b : A} (inverse a) * (inverse b) a * b
twoNegativesTimes {a} {b} = transitive (ringMinusExtracts) (transitive (inverseWellDefined additiveGroup ringMinusExtracts') (invTwice additiveGroup (a * b)))
where
open Equivalence eq
groupLemmaMove0G : {a b : _} {A : Set a} {_·_ : A A A} {S : Setoid {a} {b} A} (G : Group S _·_) {x : A} (Setoid.__ S (Group.0G G) (Group.inverse G x)) Setoid.__ S x (Group.0G G)
groupLemmaMove0G {S = S} G {x} pr = transitive (symmetric (invInv G)) (transitive (symmetric p) (invIdent G))
where
open Equivalence (Setoid.eq S)
p : Setoid.__ S (Group.inverse G (Group.0G G)) (Group.inverse G (Group.inverse G x))
p = inverseWellDefined G pr
groupLemmaMove0G' : {a b : _} {A : Set a} {_·_ : A A A} {S : Setoid {a} {b} A} (G : Group S _·_) {x : A} Setoid.__ S x (Group.0G G) (Setoid.__ S (Group.0G G) (Group.inverse G x))
groupLemmaMove0G' {S = S} G {x} pr = transferToRight' G (Equivalence.transitive (Setoid.eq S) (Group.identLeft G) pr)
oneZeroImpliesAllZero : 0R 1R {x : A} x 0R
oneZeroImpliesAllZero 0=1 = Equivalence.transitive eq (Equivalence.symmetric eq identIsIdent) (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=1) (Equivalence.reflexive eq)) (Equivalence.transitive eq *Commutative timesZero))
lemm3 : (a b : A) 0G (a + b) 0G a 0G b
lemm3 a b pr1 pr2 with transferToRight' additiveGroup (Equivalence.symmetric eq pr1)
... | a=-b with Equivalence.transitive eq pr2 a=-b
... | 0=-b with inverseWellDefined additiveGroup 0=-b
... | -0=--b = Equivalence.transitive eq (Equivalence.symmetric eq (invIdent additiveGroup)) (Equivalence.transitive eq -0=--b (invTwice additiveGroup b))
charNot2ImpliesNontrivial : ((1R + 1R) 0R False) (0R 1R) False
charNot2ImpliesNontrivial charNot2 0=1 = charNot2 (Equivalence.transitive eq (+WellDefined (Equivalence.symmetric eq 0=1) (Equivalence.symmetric eq 0=1)) identRight)
abelianUnderlyingGroup : AbelianGroup additiveGroup
abelianUnderlyingGroup = record { commutative = groupIsAbelian }