Files
agdaproofs/Rings/Ideals/Prime/Definition.agda
2020-01-05 15:06:35 +00:00

17 lines
629 B
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Ideals.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.Ideals.Prime.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} {R : Ring S _+_ _*_} {c : _} {pred : A Set c} (i : Ideal R pred) where
record PrimeIdeal : Set (a c) where
field
isPrime : {a b : A} pred (a * b) ((pred a) False) pred b
notContained : A
notContainedIsNotContained : (pred notContained) False